References
-
Amiranoff, F., et al. : 1995,
Phys. Rev. Lett., 74, 5220.
- Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., Pogosova, A.A., Ramazashvili, R.R. : 1992,
JETP Lett., 55, 571. Resonant excitation of wakefields by a laser pulse in a plasma.
- Chiou, T. C. et al. : 1995,
Phys. Plasmas, 2, 310. Laser wake-field acceleration and optical guiding in a hollow plasma channel.
- Clayton, C.E., et al. : 1993,
Phys. Rev. Lett., 70, 37.
- Dawson, J.M. : 1989,
Scientific American, 260, 54. Plasma Particle Accelerators.
- Everett, M., Lal, A., Gordon, D., Clayton, C. E., Marsh, K. A., & Joshi, C. : 1994,
Nature, 368, 527. Trapped electron acceleration by a laser-driven relativistic plasma wave.
-
Everett, M.J., et al. : 1995,
Phys. Rev. Lett., 74, 1355.
- Gibbon, P. : 1992,
Comp. Phys. Commun., 69, 299. A numerical model of the plasma beat-wave accelerator.
- Katsouleas, T., Bingham, R., (Eds.). 1996,
IEEE Trans. Plas. Sci. Special issue on 2nd generation plasma accelerators.
-
Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K.,
Azechi, H., Tanaka, K. A., Takabe, H., Nakai, S. : 1992,
Phys. Rev. Lett., 68, 48. Beat-wave excitation of plasma wave and observation of accelerated electrons.
- Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C.,
Malka, V., Darrow, C.B., Danson, C., Neely, D., Walsh, F.N. : 1995,
Nature, 377, 606. Electron acceleration from the breaking of relativistic plasma waves.
-
Mora, P., Pesme, D., Héron, A., Laval, G., Silvestre, N. : 1988,
Phys. Rev. Lett., 61, 1611. Modulational instability and its consequences for the beat-wave accelerator.
-
Nakajima, K., Fisher, D., Kawakubo, T., Nakanishi, H, Ogata, A., Kato, Y., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Sakawa, Y., Shoji, T., Nishida, Y., Yugami, N., Downer, M., Tajima, T : 1995,
Phys. Rev. Lett., 74, 4428. Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse.
- Sprangle, P., Esarey, E., Ting, A., Joyce, G. : 1988,
Appl. Phys. Lett., 53, 2146. Laser wakefield acceleration and relativistic optical guiding.
-
Sprangle, P., Esarey, E., Ting, A. : 1990,
Phys. Rev. A, 41, 4463. Nonlinear Interaction of Intense Laser Pulses in Plasmas.
-
Sprangle, P., Esarey, E., Ting, A. 1990,
Phys. Rev. Lett., 64, 2011. Nonlinear Theory of Intense Laser-Plasma Interactions.
-
Sprangle, P., Esarey, E., Krall, J., Joyce, G. : 1992,
Phys. Rev. Lett., 69, 2200. Propagation and Guiding of Intense Laser Pulses in Plasmas.
- (bad URL)
Tajima, T., & Dawson, J.M. : 1979,
Phys. Rev. Lett., 43, 267. Laser Electron Accelerator.
- Tang, C.M., Sprangle, P., Sudan, R.N. : 1984,
Appl. Phys. Lett., 45, 375. Excitation of the plasma waves in the laser beat-wave accelerator.
- Wurtele, J.S. : 1993,
Phys. Fluids B, 5, 2363. The Role of Plasma in Advanced Accelerators.
- Laser light in, 50-mev protons out.
from BAPS DPP99 (Program of the 41st Annual Meeting of the Division of Plasma Physics, Nov 1999, Seattle, WA)
-
Petawatt laser : Diagram of fast ions (3 × 1013 protons) accelerated by the strong electric field produced when electrons
are violently ejected from a plasma produced at the 0.4 mm focus point.
600 x 394 22,165
from AIP graphics.
-
Target chamber, the laser beam, shown in green in this enhanced photograph, is focused by a
parabolic mirror, in the foreground, onto aluminum foil
(which is stretched across a screen mesh).
The ions are accelerated off the back of the target in the plasma formed at the
laser focus and detected by a track detector, shown in the background.
360 x 477 70,910
from AIP graphics.
- Univ. of Michigan.:
Schematic of beam focused on a thin foil, producing a collimated beam of high-energy protons.
357 x 185 17,169
from AIP graphics.
-
Proton beam observed from behind the target as a
high-intensity laser strikes a 1.8 μm thick Al foil.
The proton beam passed through a 25 μm Mylar filter, corresponding
to an energy above 1.2 MeV.
The laser intensity on target is 2×1018 W cm-2
at second harmonics illumination normal to target. 287 x 405 19,162
from AIP graphics.
-
Spectrogram of fast protons emitted in the forward direction and deflected in dipole magnetic spectrometer.
Dashed line shows slit image position without magnet.
CR-39 detector was covered with three steps of Mylar filter of 2, 4 and 6 mm thickness,
corresponding to proton cut-off energies of 0.2, 0.3 and 0.5 MeV.
350 x 361 53,960
from AIP graphics.
-
Hatchett, S.P.:
1999, BAPS DPP99, FI2.04.
Electron, Photon, and Ion Beams from the Relativistic Interaction of Petawatt Laser Pulses with Solid Targets
(Petawatt)
-
Snavely, R.A., Hatchett, S., Key, M., Brown, C., Cowan, T., Henry, G., Langdon, B., Lasinski, B., Mackinnon, A., Pennington, D., Perry, M., Phillips, T., Roth, M., Sangster, C., Singh, M., Stoyer, M., Wilks, S., Yasuike, K.:
1999, BAPS DPP99, QO1.12.
Intense Proton and Ion Beams From Petawatt Laser Experiments
(Petawatt)
-
Wilks, S.C., Kruer, W.L., Cowan, T., Hatchett, S., Key, M., Langdon, A.B., Lasinski, B., MacKinnon, A., Patel, P., Phillips, T., Roth, M. Springer, P., Snavely, R., Haines, M.G.:
1999, BAPS DPP99, QO1.11.
Ion Acceleration in Ultra-Intense, Laser-Plasma Interactions
(Janus, USP, Petawatt)
-
Maksimchuk, A., Gu, S., Flippo, K., Mourou, G., Umstadter, D., Bychenkov, V.Y., Tikhonchuk, V.T. :
1999, BAPS DPP99, QO1.13.
Observation of High-Energy Proton Beam in Interaction of High-Intensity Subpicosecond Laser Pulse with Thin Foils
(Univ. Of Mich TW laser)
-
Shepherd, R., Fournier, K., Price, D., Lee, R., Young, B., Springer, P., Audebert, P.:
1999, BAPS DPP99, JP1.74.
Time resolved X-ray spectroscopy of thin foil heated by 100 fs, 1018 W cm-2 laser pulse
(Ultra-Short Pulse Laser (USP), LLNL)
-
Krushelnick, K. : 1999, BAPS DPP99, FI2.06.
Magnetic fields generated during high intensity laser plasma interactions
(VULCAN)
-
Amiranoff, F. et al.: 1998, Phys. Rev. Lett., 3 August
The first observation of laser wakefield acceleration of injected electrons
(see also Scientific American, March 1989)
- Clayton, C.E. et al. : 1993, Phys. Rev. Lett. 4 Jan. see also 1993, Science, 5 Feb. CO2 creates a beat pattern in hydrogen plasma producing ultrahigh-gradient acceleration of injected electrons
- Nakajima, K. et al. : 1995, Phys. Rev. Lett., 29 May.
Acceleration gradient of 30 GeV/m using a 1 ps, 3 TW laser pulse to excite waves in a plasma (ILE)
|