X-Ray LaserX-RAY LASER

Plasma cylinder (red) created by the impact of a high power pulsed laser (blue). No mirrors are used, gain is achieved by amplified spontaneous emission and a beam emerges both in the forward and reverse directions. (Matthews and Rosen 1985, Lawrence Livermore National Laboratory)

The target is made of a thin foil of selenium or other element of high atomic number deposited on a vinyl substrate to give it rigidity. The target is irradiated from both sides with a pair of laser pulses from a high power pump laser whose focus is several hundred times longer than it is wide. When it strikes, the foil 'explodes' producing a plasma consisting of selenium ions stripped of 24 electrons. The resulting ion has a very high charge, the energy difference of the outer electrons scales as Z squared (Z=ion charge) this leads to very short wavelength x-ray transitions.

Since spontaneous decay rates scale as Z to the fourth power, the pump must supply 1,000 times as much energy and deliver it 10,000 times faster than an optical laser. The solution to this problem may be low Z-ions : It may not be necessary to strip away most of the electrons from a high atomic number element, less drastic means of x-ray lasing can be achieved by using other x-ray transitions such as core electrons, which are not shielded by the outer electrons and feel the full force of the nuclear charge. Also, promising results are obtained from strong x-ray transitions in core electrons of atomic microclusters (research by Rhodes et al., 1994)

Currently the efficiency of these laser schemes is very low because most are based on collisional excitation. Much higher efficiency can be achieved by rapid cooling, leading to three body recombination pumping of a highly ionized plasma. A hybrid scheme involving contact-cooling and adiabatic expansion seems to show the most promise.

There is another promising possibility based on Electromagnetically Induced Transparency (EIT) to dramatically reduce pump power requirements and obtain highly efficient Lasing Without Inversion (also known as phaseonium lasers or phasers).

PRACTICAL USES OF X-RAY LASERS

The following is a literature survey on the practical engineering applications of x-ray lasers.

The coherent ultra-short wavelengths would be the only practical way to manufacturing nanometer scale structures required in the fields of quantum-electronics and for construction of nanometer sized robots (nanides). These lasers could also be the only conceivable way to make holograms of complicated bio-molecules while they are still within a living cell. And the promise of x-ray lasers for inertial confinement fusion holds the promise of unlimited energy for humanity.

a) Nano-Electronics

The circuits required for quantum-electronics are much smaller than current semiconductor technology. These devices hold the potential of operating with insignificant dissipation by using properties of electrons confined to ultra-small cavities of the order of the wavelength of the electron, taking advantage of wavefunction quantization. Present day semiconductor VLSI manufacturing technology considers this quantum wavefunction overlap as an impediment to the 'quasi-classical' electron-fluid approximation. This outdated approach severely limits the minimum size of circuit elements before the noise attributed to the 'tunneling' of electrons from nearby components causes irretrievable signal loss.

Instead of fighting this purely quantum effect, why not take advantage of it by shifting the emphasis away from the classical conception of an electron-fluid towards the more 'natural' and powerful quantum concept. Computers based on nano-electronics would be ultra-dense, hyper-fast and superconducting; priceless attributes for a world starving for table-top giga-flops and giga-bits for micro-dollars.

b) Nanotechnology Robots

The high spatial resolution of x-ray lasers could be used to shape parts for nanometer scale robots. These 'nanides' would revolutionize industry and medicine. In manufacturing technology they could be programmed to fabricate anything merely by providing them with enough raw materials in a water based medium. They could build entire personal computers inside something that looks like a jug of milky liquid ! They could even be programmed to reproduce themselves in case more are needed. In medicine they could be programmed to perform nano-surgical repairs anywhere within a living host.

c) Bio-Holography

The coherence and short wavelength of pulsed x-ray lasers could be used to make holographic snapshots of single bio-molecules within the living cell. This would allow microbiologists the unprecedented freedom to examine complicated and fragile organic molecules in their natural environment, while they still reside within living cells. Under suitable conditions these molecules could even be 'caught in the act' of important chemical changes during their normal functioning.

No longer would there be a need for the long a laborious task of isolating, purifying and growing perfect crystals on the space shuttle etc ... Most of the larger bio-molecules change their shape when removed from their natural watery environment, or when they are removed from the cell walls. During the purification process, vital information about their functioning and geometrical location and configuration within the living cell is lost.

All these problems are eliminated with x-ray holography. The wavelength is tuned within the water window where the discontinuous absorption coefficient allows the x-rays to pass relatively unimpeded compared to other atomic components of bio-molecules such as carbon. The beam could pass through a relatively thin layer of water containing the cell. Various cellular components could be imaged simultaneously in three dimensions during the holographic snapshot. The cell would most probably be irretrievably damaged after the exposure, however the vital structural information would be permanently recorded in the hologram before this occurred.

The only other technology at present which comes close to this 'real-time' capability is magnetic resonance spectroscopy, however its ability to determine the exact geometrical structures and positions of bio-molecules within living cells is somewhat indirect and speculative.

The capability of directly imaging living bio-molecules would allow tremendous advances to be made in genetics and other areas.

Astronomy

Recent spectra from the ASCA x-ray astronomy mission reveals an x-ray laser is operating in quasars PKS 0637-752. This remarkable evidence provides strong support for the laser star theory : Strong population inversions in stellar atmospheres can occur at any wavelength from microwave through optical and x-ray.

Web References

  1. Varshni, Y.P. : 1999, Bull.Amer.Phys.Soc., April 1999 Evidence for possible laser action in an x-ray line in the quasar PKS 0637-752
  2. X-Ray Lasers : Lawrence Livermore National Laboratory (Collisional pumping)
  3. Design and applications of laser-plasma x-ray lasers : An X-Ray Laser Network, European Commission and 7 laboratories in France, Germany and United Kingdom.
  4. Ulf Litzén*,U., Persson,A., Starczewski,T., Steingruber,J., Svanberg,S. Wahlström, C.: 1996, Division of Atomic Physics, Lund Institute of Technology (LTH) . X-ray laser related investigations
  5. Colorado State University (CSU) : x-ray laser at 469 Å in a plasma generated by a compact electrical discharge
  6. Laser-plasma simulation code: MED103 (useful for computing gain in a recombining plasma x-ray laser)
  7. Power Viewwing , Planet Science.
  8. Hively,W.: 1995, Discover Magazine, 'X-ray Dreams' (July)
  9. Atomic and Molecular Physics team Rhodes,C.K., et al.: 1994, X-Ray lasers based on Xenon microclusters pumped by photon excitations (see also McPherson's page at Univ. of Illinois, Chicago)
  10. Wilhelm Conrad Roentgen - Discovered x-rays on November 8, 1895
  11. X-ray optics and microscopy at Stony Brook
  12. X-ray Holography Group -- Lawrence Berkeley National Laboratory
  13. Molecular Structure Laboratory - SUNY Stony Brook
  14. Hard X-ray microscopy (NASA)
  15. National Ignition Facility, NIF (Livermore)
  16. X-ray research
  17. Gasparyan,P.D., Starikov,F.A., Starostin,A.N.: 1998, Physics - Uspekhi 41 761 Angular divergence and spatial coherence of x-ray laser radiation
  18. Fill,E., et al. : 1995, Phys. Rev. E51, 6016. Linearly polarized OFI (Optical Field Ionization) pulse increases cooling rate of recombination X-Ray lasers. (MPG , Lund)
  19. Amendt, P., Eder, D. C., & Wilks, S. C.: 1991, X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett., 66, 2589-2592.
  20. Blyth, W. J., Preston, S. G., Offenberger, A. A., Key, M. H., Wark, J. S., Najmudin, Z., Modena, A., Djaoui, A., & Dangor, A. E.: 1995, Plasma temperature in optical field ionization of gases by intense ultrashort pulses of ultraviolet radiation. Phys. Rev. Lett., 74, 554-557.
  21. Burnett, N. H., & Enright, G. D.: 1990, Population inversion in the recombination of optically-ionized plasmas. IEEE J. Quant. Elec., 26, 1797-1808.
  22. Dunne, M., Afshar-Rad, T., Edwards, J., MacKinnon, A. J., Viana, S. M., Willi, O., & Pert, G.: 1994, Experimental observations of the expansion of an optical-field-induced ionization channel in a gas jet target. Phys. Rev. Lett., 72, 1024-1027.
  23. Fill, E. : 1994, X-Ray Lasers (Part II). Appl. Phys. B, 58, 1.
  24. Key, M. H.: 1985, X-Ray lasers. Nature, 316, 314.
  25. Matthews, D. L., & Rosen, M. D.: 1988, Soft-X-Ray Lasers. Scientific American, December, 86-91.
  26. Maxon, S., Estabrook, K. G., Prasad, M. K., Osterheld, A. L., London, R. A., & Eder, D. C.: 1993, High gain X-ray lasers at the water window. Phys. Rev. Lett., 70, 2285-2288.
  27. Offenberger, A. A., Blyth, W., Dangor, A. E., Djaoui, A., Key, M. H., Najmudin, Z., & Wark, J. S.: 1993, Electron temperature of optically ionized gases produced by high intensity 268nm radiation. Phys. Rev. Lett., 71, 3983-3986.
  28. Penetrante, B. M., & Bardsley, J. N.: 1991, Residual energy in plasmas produced by intense subpicosecond lasers. Phys. Rev. A, 43, 3100.
  29. Röntgen, W. C.: 1895, Nature, 53, 274.
  30. Steyer, M., Schäfer, F. P., Szatmari, S., & Kühnle, G.: 1990, Feasibility of a laboratory X-ray laser pumped by ultrashort UV laser pulses. Appl. Phys. B, 50, 265-273.
  31. Strobel, G. L., Eder, D. C., & Amendt, P.: 1994, Saturation intensity for ultrashort-pulse X-ray laser schemes. Appl. Phys. B, 58, 45-50.
  32. Willi, O., Afshar-Rad, T., Barrow, V., Edwards, J., & Smith, R.: 1989, Basic physics studies for novel X-ray laser schemes using ultra-short laser pulses. Pages 194-199 of: Falcone, R. W., & Kirz, J. (eds), Short Wavelength Coherent Radiation: Generation and Applications. New York: AIP.
  33. Proceedings of the SPIE, (Soc.Photo.opt.Instr.Eng.), 1551 (1992).
  34. Pert,G.J., Rose,S.J.: 1990, Appl. Phys. B 50, 307
  35. Matthews,D.L. et al.: 1985,Phys.Rev.Lett., 54, 110.
  36. Rosen,M.D. et al.: 1985, Phy.Rev.Lett., 54, 106.
  37. Monot,P. et al. : 1995, Phys. Rev. Lett. 74, 2953
  38. Jaeglé,P. et al. & M.H. Key et al., 1996, Inst. Phys. Conf. Ser. 151, 1-16. Collisional X-ray lasers
  39. Bonnet,L. et al.: 1994, Inst. Phys. Conf. Ser. 140, 193
  40. Groups
  41. Recombination lasers : H-like (Balmer 3d-2p line, He II) and Li-like (nf-3d line, C IV, N V, O VI), He-like (He I, C III, N IV, O V)

REFERENCES

  1. Kato,Y., Takuma,H. (eds) : 1998, X-Ray Lasers : Proceedings of the 6th International Conference on X-Ray Lasers Held in Kyoto, Japan, 31 August-4 September 1998 Inst of Physics Pub; ISBN: 0750305924
  2. Dimauro,L., Murnane,M., L'Huillier A. (eds) : 1997, Applications of High-Field and Short Wavelength Sources. Proceedings of the Optical Society of America Conference held March 1997, Santa Fe, New Mexico Plenum Pub Corp; ISBN: 0306459094
  3. Svanberg,S., Wahlstrom,C.-G. (eds): 1996, X-Ray Lasers : Proceedings of the Fifth International Conference on X-Ray Lasers Held in Lund, Sweden, 10-14 June, 1996 Iop Pub/Institute of Physics; ISBN: 0750304065
  4. Rocca,J.J., Hagelstein,P.L. (eds): 1995, Soft X-Ray Lasers and Applications : Proceedings : 10-11 July 1995 San Diego, California (Proceedings of Spie--The International Society for Optical e Society of Photo-optical Instrumentation Engineers; ISBN: 081941879X
  5. Eder,D., Matthews,D. (eds) : 1994, X-Ray Lasers, AIP, New York.
  6. 1994, High Field Interactions and Short Wavelength Generation : Summaries of Papers Presented at the Topical Meeting ... August 22-25, 1994, St. Malo, France Optical Society of America; ISBN: 1557523614
  7. 1993, Ultrashort wavelength lasers II : 12-13 July 1993, San Diego, California ISBN: 0819412619
  8. Korobkin,V.V., Romanovsky, M.Yu. (eds) : 1992, Short Wavelength Lasers and Their Applications : Proceedings of International Symposium, Samarkand, Ussr, May 14-18, 1990 Nova Science Publishers, Inc.; ISBN: 1560720204
  9. 1992, Short Wavelength Lasers and Their Applications Nova Science Publishers, Inc.; ISBN: 1560720209
  10. Fill,E.E. (ed) : 1992, X-Ray Lasers : Proceedings of the 3rd International Colloquium Held at Schliersee, Germany, 18-22 May 1992 Iop Pub/Inst of Physics; ISBN: 0854984151 Lib. Congress Num : TA1707.X28
  11. Sprangle,P. (ed) : 1991, Short-Wavelength Radiation Sources : 24-25 July, 1991 San Diego, California (Spie Proceedings, Vol. 1552) Society of Photo-optical Instrumentation Engineers; ISBN: 0819406805
  12. Suckewer,S. (ed) : 1991, Ultrashort Wavelength Lasers : 22-23 July, 1991 (Spie Proceedings, Vol. 1551) Society of Photo-optical Instrumentation Engineers; ISBN: 0819406791
  13. Tallents,G.J, (ed) : 1990, X-Ray Lasers : Proceedings of the 2nd International Colloquium Held at the University of York, 17-21 September 1990 Iop Pub/Inst of Physics; ISBN: 085498044X Lib. Congress Num : TA1707.X27
  14. Elton,R.C.: 1990, X-Ray Lasers Academic Press; ISBN: 0122380800 Lib. Congress Num : TA1707.E37
  15. Falcone,R.W., Kirz,J. (ed) : 1989, Osa Proceedings on Short Wavelength Coherent Radiation : Generation and Applications Optical Society of America; ISBN: 1557520534
  16. Yamanaka, C. (ed) : 1988, Short-Wavelength Lasers and Their Applications : Proceedings of an International Symposium (Springer Proceedings in Physics, Vol 30) Springer Verlag; ISBN: 0387503110
  17. Oda,T. et al. (eds): 1987, Short Wavelength Laser and Their Applications, Springer Verlag.
  18. 1986, Topical Meeting on Short Wavelength Radiation, Generation and Applications : summaries of papers presented at the Short Wavelength Coherent Radiation: Generation and Applications Topical Meeting, March 24-26, 1986, Monterey, California ISBN: 0936659025

References from
Gasparyan,P.D., Starikov,F.A., Starostin,A.N.: 1998, Physics - Uspekhi 41 761 Angular divergence and spatial coherence of x-ray laser radiation
  1. Prokhorov, A.M.: 1965, Science 149 828
  2. Robinson, C.A. : 1981, Aviation Week and Space Technol. 114 25
  3. Canavan, G.H., Bloembergen, N., Patel, C.K.N. : 1987, Physics Today 40 (11) 48 "Debate on APS directed-energy weapons study"
  4. Broad, W.J.: 1992, Teller's War (New York: Simon & Schuster)
  5. Matthews, D.L. et al.: 1985, Phys. Rev. Lett. 54 110
  6. Rosen, M.D. et al.: 1985, Phys. Rev. Lett. 54 106
  7. Suckewer, S. et al.: 1985, Phys. Rev. Lett. 55 1753
  8. Elton, R.C.: 1975, Appl. Optics 14 97; Zherikhin, A.N., Koshelev. K.N., Letokhov, V.S.: 1976, Kvantovaya Elektron. 3 152 [1976, Sov. J. Quantum Electron. 6 82]; Vinogradov, A.V., Sobel'man, I.I., Yukov, E.A.: 1977, Kvantovaya Elektron. 4 63 [1977, Sov. J. Quantum Electron. 7 32]
  9. Gudzenko, L.I., Shelepin, L.A.: 1963, Zh. Eksp. Teor. Fiz. 45 1445 [1964, Sov. Phys. JETP 18 998]; Pert, G.J.: 1976, J. Phys. B 9 3301; 1979, 12 2067
  10. Matthews, D L et al. : 1987, J. Opt. Soc. Am. B 4 575
  11. Keane, C J et al. : 1989, J. Phys. B 22 3343
  12. London, R A et al. : 1989, J. Phys. B 22 3363
  13. Skinner, C 1991, Phys. Fluids B 3 2420
  14. Fill, E E : 1995, in Laser Interaction with Matter (IOP Conf. Ser., Vol. 140, Ed. S J Rose) (Bristol: IOP Publ., ) p.111
  15. Elton, R C 1990, X-Ray Lasers (Boston: Academic Press)
  16. X-Ray Lasers: 1990 (IOP Conf. Ser., Vol. 116, Ed. G J Tallents) (Bristol: IOP Publ.)
  17. X-Ray Lasers: 1992 (IOP Conf. Ser., Vol. 125, Ed. E E Fill) (Bristol: IOP Publ.)
  18. X-Ray Lasers: 1994 (AIP Conf. Proc., Vol. 332, Eds D C Eder, D L Matthews) (Williamsburg: AIP Publ.)
  19. X-Ray Lasers: 1996 (IOP Conf. Ser., Vol. 151, Eds S Svanberg, C-G WahlstroÈm) (Bristol: IOP Publ.)
  20. Nickles, P V et al. : 1995, Proc. SPIE 2520 373
  21. Afanas'ev Yu V, Shlyaptsev V N.: 1989, Kvantovaya Elektron. 16 2499 [1989, Sov. J. Quantum Electron. 19 1606]
  22. Eder, D C et al. , in Ref. [19] p. 136
  23. Lemoff, B et al. : 1995, Phys. Rev. Lett. 74 1574
  24. Rocca, J J et al. : 1994, Phys. Rev. Lett. 73 2192
  25. Rocca, J J et al. , in Ref. [19] p. 176
  26. Matthews, D L, in Ref. [19] p. 32
  27. Applications of X-Ray Lasers (Eds R London, D Matthews, S Suckewer) (San Francisco: Nat. Tech. Inform. Serv. Doc. No. LLNL-CONF-9206170, 1992)
  28. Koch, J A et al. : 1992, Phys. Rev. Lett. 68 3291
  29. London, R A 1993, Phys. Fluids B 5 2707
  30. Vinogradov, A V et al. : 1989, Zerkal'naya Rentgenovskaya Optika (X-Ray Mirror Optics) (Leningrad: Mashinostroenie); Chakraborty, P.: 1991, Int. J. Modern Phys. B 5 2133
  31. Allen, L, Peters, G I.: 1970, Phys. Lett. A 31 95
  32. Peters, G I, Allen, L 1971, J. Phys. A 4 238; Allen L, Peters G I 1971, J. Phys. A 4 377; 1971, J. Phys. A 4 564
  33. Peters, G I, Allen, L 1972, J. Phys. A 5 546
  34. Michalas, D.: 1978, Stellar Atmospheres (San Francisco: W.H. Freeman and Co.)
  35. Biberman, L M, Vorob'ev, V S, Yakubov, I T Kinetika Neravnovesno Nizkotemperaturno Plazmy (Kinetics of Nonequilibrium Low-Temperature Plasma) (Moscow: Nauka, 1982) [Translated into English (New York: Consultants Bureau, 1987)]
  36. Rautian, S G, Smirnov, G N, Shalagin, A M 1979, Nelineinye Rezonansy v Spektrakh Atomov i Molekul (Nonlinear Resonances in Spectra of Atoms and Molecules) (Novosibirsk: Nauka)
  37. Gasparyan, P D et al. : 1994, Zh. Eksp. Teor. Fiz. 105 1593 [1994, JETP 78 858]
  38. Zemtsov, Yu K, Sechin, A Yu, Starostin, A N 1996, Zh. Eksp. Teor. Fiz. 110 1654 [1996, JETP 83 909]
  39. Maitland, A., Dunn, M.H.: 1969, Laser Physics (Amsterdam: North-Holland Publ. Co.)
  40. Rytov, S M, Kravtsov, Yu A, Tatarski, V I 1978, Vvedenie v Statistiches-kuyu Radiofiziku Part 2 (Principles of Statistical Radiophysics)(Moscow: Nauka) [Translated into English (Berlin: Springer-Verlag, 1989)]
  41. Apresyan, L A, Kravtsov, Yu A 1983, Teoriya Perenosa Izlucheniya (Theory of Radiation Transfer) (Moscow: Nauka)
  42. Landau, L D, Lifshitz, E M Elektrodinamika Sploshnykh Sred (Electrodynamics of Continua Media) (Moscow: Nauka, 1981) [Translated into English (New York: Pergamon Press, 1984)]
  43. Born, M, Wolf, E 1964, Principles of Optics 4th ed. (Oxford, New York: Pergamon Press)
  44. Gudzenko, L I, Yakovlenko, S I 1978, Plazmennye Lazery (Plasma Lasers) (Moscow: Atomizdat)
  45. London, R A 1988, Phys. Fluids 31 184
  46. Boswell, B et al. : 1990, Phys. Fluids B 2 436
  47. Boehly, T et al. : 1990, Opt. Commun. 79 57
  48. Ratowsky, R P et al. : 1994, ICF Quart. Rep. UCRL-LR 105821-94-2 (Livermore: LLNL) 4 (2) 63
  49. Plowes, J A, Pert, G J, Holden, P B 1995, Opt. Commun. 116 260
  50. Wan, A S, Mayle, R W, Kato, Y, Osterheld, A L,: 1996, in Laser Interaction and Related Plasma Phenomena (AIP Conf. Proc., Vol. 369, Eds S Nakai, G N Miley) (New York: AIP Conf.) part 2, p. 778
  51. Zimmerman, G B, Kruer, W L 1975, Comments Plasma Phys. Controlled Fusion 11 51
  52. Avrorin, E N et al. : 1980, Pis'ma Zh. Eksp. Teor. Fiz. 32 457 [1980, JETP Lett. 32 437]
  53. Craxton, R S, MacCrory, R L 1980, LLE Reports 99 and 108 (Rochester: University of Rochester, )
  54. Sofronov, I D et al., in Konstruirovanie Algoritmov i Reshenie Zadach Matematichesko Fiziki (Construction of Algorithms and Solution to Problems of Mathematical Physics) (Eds G P Voskresenski, V V Zabrodin) (Moscow: Inst. of Problems in Mechanics, USSR Acad. Sciences, 1989)
  55. Klisnick, A et al. , in Ref. [17] p. 305
  56. Klapisch, M et al. : 1977, J. Opt. Soc. Am. 67 148
  57. Hagelstein, P L 1981, LLNL Report UCRL-53100 (Livermore: LLNL)
  58. Voinov, B Aet al. : 1993, Vopr. Atom. Nauki Tekhn., Ser. Matem. Model. (2) 65
  59. Politov, V Yu, Lykov V A, Shinkarev M K 1993, Proc. SPIE 1928 157
  60. Makhrov, V et al. : 1994, J. Phys. B 27 1899
  61. Holden, P B et al. : 1994, J. Phys. B 27 341
  62. Derzhiev, V I et al. : 1987, Preprint IOFAN No. 235 (Moscow: Inst. Gen. Phys. Publ.); Derzhiev V I, Zhidkov A G, Yakovlenko S I 1992 , Trudy IOFAN 40 52
  63. Limpoukh,  I, Rozanov, V B 1984, Kvantovaya Elektron. 11 1416 [1984, Sov. J. Quantum Electron. 14 955]
  64. Rosen, M D 1990, Phys. Fluids B 2 1461
  65. Willi, O et al. : 1990, Phys. Fluids B 2 1318
  66. Kieffer, J C et al. : 1991, Phys. Fluids B 3 463
  67. Nantel, M et al. : 1993, Phys. Fluids B 5 4465
  68. La Fontaine, B et al. : 1993, Phys. Rev. E 47 583
  69. Wan, A S et al. , in Ref. [19] p. 504
  70. Hora, H 1981, Physics of Laser Driven Plasmas (New York: John Wiley and Sons)
  71. Pantell, R H, Puthoff, H E 1969, Fundamentals of Quantum Electronics (New York: Plenum Press)
  72. Allen, L, Eberly, J H 1975, Optical Resonance and Two-Level Atoms (New York: John Wiley and Sons)
  73. Leontovich M.: 1944, Izv. Akad. Nauk SSSR, Ser. Fiz. 8 16
  74. Hopf, F A, Meystre P 1975, Phys. Rev. A 12 2534; Raymer M G, Mostowski J 1981, Phys. Rev. A 24 1980; Raymer M.G. et al. : 1985, Phys. Rev. A 32 332
  75. Hazak, G, Bar-Shalom, A 1988, Phys. Rev. A 38 1300
  76. Sureau, A, Holden, P B 1995, Phys. Rev. A 52 3110
  77. Ratowsky, R P, London, R A 1995, Phys. Rev. A 51 2361
  78. Hazak, G, Bar-Shalom, A 1989, Phys. Rev. A 40 7055
  79. London, R A, Strauss, M, Rosen, M D 1990, Phys. Rev. Lett. 65 563
  80. Amendt, P, London, R A, Strauss, M 1991, Phys. Rev. A 44 7478
  81. Amendt, P, London, R A, Strauss, M 1993, Phys. Rev. A 47 4348
  82. Borovski, A V, Galkin, A L, Korobkin, V V 1988, Kvantovaya Elektron. 15 1457 [1988, Sov. J. Quantum Electron. 18 915]; Borovski, A V, Galkin A L : 1993, Trudy IOFAN 41 103
  83. Ladagin, V K, Starikov, F A, Volkov, V A, in Ref. [19] p. 336
  84. Feit, M D, Fleck, J A, Jr. 1990, J. Opt. Soc. Am. B 7 2048
  85. Feit, M D, Fleck, J A, Jr. 1991, Opt. Lett. 16 76
  86. Starikov, F A 1989, Vopr. Atom. Nauki Tekhn., Ser. Teor. Prikl. Fiz. (4) 14
  87. Starikov, F A 1990, Vopr. Atom. Nauki Tekhn., Ser. Teor. Prikl. Fiz. (2) 33
  88. Starikov, F A, Urlin, V D 1991, Kvantovaya Elektron. 18 436 [1991, Sov. J. Quantum Electron. 21 393]
  89. Akhmanov, S A, D'yakov Yu E, Chirkin A S Vvedenie v Statisti-cheskuyu Radiofiziku i Optiku (Introduction to Statistical Radio-physics and Optics) (Moscow: Nauka, 1981)
  90. Starikov, F A 1990, Vopr. Atom. Nauki Tekhn., Ser. Teor. Prikl. Fiz. (3) 20
  91. Starikov, F A 1992, Kvantovaya Elektron. 19 527 [1992, Sov. J. Quantum Electron. 22 483]
  92. Starikov, F A 1995, in Fizika Yaderno-Vozbuzhdaemo Plazmy i Problemy Lazerov s Yaderno Nakachko Vol. 2 (Proceedings of the Second International Conference on Physics of Nuclear-Excited Plasmas and Problems of Nuclear-Pumped Lasers) (Arzamas-16: VNIIEF) p. 260; 1996, Kvantovaya Elektron. 23 205 [1996, Quantum Electron. 26 199]
  93. Linford, G J et al. : 1974, Appl. Optics 13 379
  94. Kryuchenkov, V B et al. : 1990, Kvantovaya Elektron. 17 189 [1990, Sov. J. Quantum Electron. 20 146]
  95. Mokhov, Yu V : 1991, Vopr. Atom. Nauki Tekhn., Ser. Teor. Prikl. Fiz. (1) 29
  96. Starikov, F A 1994, Kvantovaya Elektron. 21 343 [1994, Quantum Electron. 24 320]
  97. Chirkov, V A 1984, Kvantovaya Elektron. 11 2253 [1984, Sov. J. Quantum Electron. 14 1497]
  98. Bunkin, F V, Bykov, V P 1986, Kvantovaya Elektron. 13 869 [1986, Sov. J. Quantum Electron. 16 569]
  99. Fill, E E 1988, Opt. Commun. 67 441
  100. Ladagin, V K, Starikov F A, Urlin V D 1993, Kvantovaya Elektron. 20 471 [1993, Quantum Electron. 23 406]
  101. MacGowan, B J et al. : 1986, Proc. SPIE 688 36
  102. Whelan, D A et al. : 1987, Proc. SPIE 831 275
  103. Zhidkov, A G, Terskikh A O, Yakovlenko S I 1988, Kratk. Soobshch. Fiz. (9) 27; Gulov A V et al. : 1990, Kvantovaya Elektron. 17 753 [Sov. J. Quantum Electron. 20 675 (1990)]
  104. Volkov, V A et al. : 1991, Kvantovaya Elektron. 18 1329 [1991, Sov. J. Quantum Electron. 21 1214]
  105. Zahavi, O, Hazak, G, Zinamon, Z J. 1993, Opt. Soc. Am. B 10 271
  106. Trebes, J E et al. : 1992, Phys. Rev. Lett. 68 588
  107. Lee, T N, McLean, E A, Elton, R C 1987, Phys. Rev. Lett. 59 1185
  108. O'Neil, D M et al. : 1990, Opt. Commun. 75 406
  109. Starikov, F A 1993, Kvantovaya Elektron. 20 477 [1993, Quantum Electron. 23 412]
  110. Starikov, F A, in Ref. [19] p. 315
  111. Sutton, G W 1969, AIAA Journal 7 1737
  112. Lutovinov, V S, Chechetkin V R 1987, Zh. Eksp. Teor. Fiz. 93 1602 [1987, Sov. Phys. JETP 66 916]
  113. Amendt, P, Strauss, M, London R 1996, Phys. Rev. A 53 R23
  114. Suckewer, S et al. : 1986, Phys. Rev. Lett. 57 1004
  115. Tomasel, F G, Shlyaptsev, V N, Rocca J J 1996, Phys. Rev. A 54 2474
  116. Nilsen J 1993, Phys. Scr. T47 83
  117. Boehly, T et al. : 1990, Phys. Rev. A 42 6962
  118. Nilsen, J et al. : 1993, Phys. Rev. A 48 4682
  119. Moreno, J C, Nilsen, J, Da Silva, L B 1994, Opt. Commun. 110 585
  120. Holden, P B, Rus B 1995, Opt. Commun. 119 424
  121. Li, Y, Pretzler, G, Fill, E E 1995, Phys. Rev. A 51 R4341; 1995, Opt. Commun. 119 557; Li Y, Pretzler G, Fill E E, Nilsen J : 1996, J. Opt. Soc. Am. B 13 742
  122. MacPhee, A G et al. , in Ref. [19] p. 50
  123. Tallents, G J et al. , in Ref. [19] p. 372
  124. Plowes, J A, Pert, G J, Holden, P B : 1995, Opt. Commun. 117 189
  125. Starikov, F A 1997, Kvantovaya Elektron. 24 691 [1997, Quantum Electron. 27 673]
  126. Jaegle, P et al. , in Ref. [19] p. 1
  127. Nilsen, J et al. : 1997, Phys. Rev. A 55 827
  128. Lu, P, Li, Y, Fill, E E : 1996, Phys. Rev. A 54 5193
  129. Albert, F et al. in Ref. [19] p. 427
  130. Shlyaptsev, V N et al. in Ref. [19] p. 215
  131. Bonnet, L, Jacquemot, S, in Ref. [19] p. 53; Schegel Th, Nickles P V, Sandner W, in Ref. [19] p. 91
  132. Fiedorowicz, H et al. : 1996, Phys. Rev. Lett. 76 415
  133. Fiedorowicz, H et al. , in Ref. [19] p. 76
  134. Rosen, M D, Trebes, J E, Matthews, D L 1987, Comments Plasma Phys. Controlled Fusion 10 245
  135. Shimkaveg, G Met al. , in Ref. [17] p. 61
  136. Rus, B et al. : 1995, Phys. Rev. A 51 2316
  137. Ceglio, N M et al. : 1988, Appl. Opt. 27 5022
  138. Ceglio, N M et al. : 1988, Opt. Lett. 13 108
  139. Hara, T et al. , in Ref. [19] p. 200
  140. Da Silva, L B et al. : 1993, Proc. SPIE 2012 158
  141. Lunney, J G Appl. Phys. Lett. 48 891 (1986)
  142. Kodama, R et al. : 1994, Phys. Rev. Lett. 73 3215
  143. Daido, H et al. : 1995, Opt. Lett. 20 61
  144. Yuan, G et al. : 1995, Phys. Rev. A 52 4861
  145. Plowes, J A, Pert, G J, Holden, P B 1995, Opt. Commun. 116 260
  146. Nilsen, J et al. : 1996, Opt. Commun. 124 287; 1996, 130 415
  147. Hagelstein, P L 1983, Plasma Phys. 25 1345
  148. Lewis, C L S et al. : 1992, Opt. Commun. 91 71
  149. Wang, S et al. : 1992, J. Opt. Soc. Am. B 9 360
  150. Carillon, A et al. : 1992, Phys. Rev. Lett. 68 2917
  151. Key, M H et al. , in Ref. [19] p. 9
  152. Shvarts, D et al. : 1987, Proc. SPIE 831 283
  153. Boehly, T et al. : 1987, Proc. SPIE 831 305
  154. Boehly, T et al. : 1990, Appl. Phys. B 50 165
  155. Pert G, J et al. , in Ref. [19] p. 260