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ABSTRACT

The population densities of the discrete levels of the lithium-1like
ions C IV, NV, and 0 VI in optically thin plasmas cooled by adiabatic
expansion have been calculated with the Collisional-Radiative (CR) plas-
ma model, suitably modified to account for the S§Tl;>energy separation
of the ground and the first excited states of these ions. The following
elementary processes have been included in the CR model: electron impact
ionization, excitation, and de-excitation, three-body and radiative rec-

~ombination, and spontaneous transitions. The data and calculations a-
vailable on these processes have been analysed and extended by various
methods. The resulting rate coefficients are compared with the corres-

ponding hydrogenic values, and a discussion of their accuracy is given.

Population inversions have been found to occur in many of the transi-
tions of these ions. We have concentrated our attention to such transi-
tions of the ion C IV between levels with n & 6 which give rise to emis-
sion lines in the visible region of the spectrum. The gain %'cf the in-

versely populated transitions is presented in the form of n,-T, diagrams.

The C IV AM4646,4658 lines arising from the 6f+5d and 6g-5f transi-
tions respectively, are found to be strongly inverted and should be ex-
cellent candidates for producing 1laser action in 1laboratory plasmas
cooled by adiabatic expansion techniques. In addition, the behavior of
the line C IV X4650 observed in the WC category of the Wolf-Rayet stars
is found to be in agreement with that expected from the model calcula-
tions. The present investigation thus provides an understanding of the
unusual strength of the C IV X4650 emission in Wolf-Rayet stars, and
provides a strong basis for believing that laser action is responsible

for it.
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INTRODUCTION

Under ordinary terrestrial conditions, plasmas are quite rare and
unusual. However, most of the matter in the observable universe exists
in an ionized state. The investigation of plasmas is thus a necessity
if we are to achieve a fuller understanding of nature especially since
they are the seat of many varied and unexpected phenomena. In recent
years, the investigation of both laboratory and astrophysical plasmas
has intensified and gained in importance. Previously uncharted regions

are being explored and new territories opened to our investigations.

Non~equilibrium processes play an important role in plasmas under
certain physical conditions. The purpose of "this work is to study the
adiabatic expansion of C IV, NV, and O VI plasmas and to identify the
conditions under which population inversions are likely to result in the
levels of these ions. 'This work is of interest in that it provides an
indication of the lines vhich are likely candidates for undergcing laser
action by this process in laboratory plasmas. In addition, this mechan-
ism may provide an explanation of the intensity anomalies of C IV lines

in Wolf-Rayet stars.

In Chapter I, the calculation of the population densities of the
energy levels of a hydrogen-like monatomic plasma is considered. Under
equilibrium conditions, the Local Thermodynamic Equilibrium (LTE) model

is used and the population densities are calculated from the Boltzmann
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and the Saha equations. For non-equilibrium conditions, the Collision-—
al-Radiative (CR) model is used to calculate the level population densi-
ties, and the work of House (1964) to obtain the ion densities. The
model used to simulate the adiabatic expansion of the plasma and the

mechanism giving rise to laser action are then considered.

In Chapter II, the calculation of the rate coefficients needed in the
CR model are presented for hydrogenic ions. These coefficients are well
known and their calculation is relatively simple. The following coeffi-
cients are included: electron impact ionization, excitation, and de-ex-
citation rate coefficients, three-body and radiative recombination rate

coefficients, and spontaneous transition probabilities.

Chapter III is devoted to the lithium-like ions C IV, NV, and O VI.
These are compared to the hydrogenic ions and the differences between
them are noted. Such differences arise in tﬁe structure, the energy
eigenvalues, and the effective quantun numbers of these ions, and
require that the CR model be modified. 1In particular, the relatively
small energy separation of the ground and the first excited states
requires that these two levels be considered as two ground states in the
CR model. The data available on these ions is then summarized. The
data are scarce and consist mostly of thegretical calculations; very

little experimental data have been published.

Chapters IV to VIII deal with the calculation of the rate coeffi-
cients of the 1lithium-like ions C IV, NV, and O VI. The following
coefficients are included: electron impact 1ionization (Chapter V),

excitation (Chapter VI), and de-excitation (Chapter VII) rate coeffi-



"cients, the three-body (Chapter VII) and radiative (Chapter VIII)
recombination rate coefficients, and the oscillator strengths (Chapter
wv. These Chapters include an analysis of the available data and cal-
culations, a description of the methods used to extend the data, a com-
parison with the corresponding hydrogenic values, and a discussion of

the accuracy of the resulting rate coefficients.

In Chapter IX, results for such lines which arise from transitions
between levels of the ion C IVwith n ¢ 6, which lie in the visible
region of the spectrum, and for which laser action is possible, are p’fe}?
sented in the form of ng-Te diagrams. These show the gain «' of the
lasing process as a function of the free electron density n, and the
free electron temperature Te of the plasma. These lines are compared
with the lines of C IV observed in Wolf-Rayet stars which display anoma-
lous intensities. 1In particular, the evidence available on the Wolf-
Rayet spectral line C IV A4658 is summarized and the behavior of the

line is compared with the expectations of the model calculations,

In conclusion, we find that the present investigation provides an
understanding of the unusual strength of the C IV \4558 emission in
Wolf-Rayet stars and provides a strong basis for believing that laser
action is responsible for it. In addition, we find that the C IV
}\)\4646, 4658 1lines will be excellent candidates for producing laser

action in laboratory plasmas by adiabatic expansion techniques.
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NOTATION

A few words on the notation used in this work are necessary. The
symbols n' and n are used to denote quantum numbers whereas p and g are
used as state labels. We use the convention n' < n; no such condition is
imposed on p and q. Subscripted n's on the other hand denote population
densities. When it is important to distinguish between the initial and

final states of a transition, an arrow is used such as in f?* how-

17

ever, if the order is not important, no arrow is used: E Signifi-

Pa°
cant digits are denoted by a capital S as used by Cody and
Thatcher (1968). An denotes natural or napierian logarithms while log

denotes base ten logarithms.

Tt should also be noted that the expression "average state” is used
to denote a state in which the orbital angular momentum splitting of the
level is neglected. Similarly, the expression "average rate coeffi-

cient" denotes a coefficient which involves an average state.

Atomic units are often used in this work due to the convenience of
such units to describe processes occurring at the level of the atom.
They can be easily converted to SI units with the following conversion
factors:

V\"

-
mex 5.29177 x 10~ m.

Length: Bohr radius, 4, =
Area: WoX = 8.79735 x 107" m*.
Energy: 1 eV = 1.60219 x 18”" J;

1 Rydberg = hcR. = 13.6058 eV;
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2.177991 x 10~ J;

1 an? = 1.23985 x 10" %ev;

1]

1.98648 x 18 ~ J.

Temperature: 1 eV = 11605 K,

Values of the fundamental constants are taken from Taylor et al. (1969).
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GLOSSARY OF IMPORTANT PHYSICAL SYMBOLS

aP(p): cross-section for the photoionization of state p
Aﬂ’P: Einstein spontaneous transition probability coefficient
of the g->p transition
Cp»qu): electron impact excitation rate coefficient of the
p—>q transition
E: free electron kinetic energy
Epq:  energy separation of levels'p and q
f(v): free electron velocity distribution
f;: cooling factor of the plasma
f;: expansion factor of the plasma
5?*4: oscillator strength of the p->gq transition
E\T,F(T): electron impact de-excitation rate coefficient of
the g->p transition
g: Kramers~daunt factor
I,: ionization potential of hydrogen
I,: ionization potential of level p
k*: ejected electron kinetic energy
n: quantum number
n': quantum number
n*: effective quantum number
ngs : ground state quantum number
n,: population density of species A

ng,: free electron population density
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ng: ionic population density

ny: population density of state p
n?: Saha equilibrium value of the population density of state p

3

ny : steady state value of the population density of state p

-~

p: state label

gq: state label

rg), rg’, and rﬁ”i population coefficients of level p

Rye: radial matrix element of the n'f{'->nAf transition

Seg: collisional-radiative ionization rate coefficient

Sp(T): electron impact ionization rate coefficient of level p
Sp¢q: line strength of the p->q transition

T,: temperature of species A

U: normalized kinetic energy

uW. partition function of species A

Up: ionic partition function

Yp: Population density per unit statistical weight of level p

Z

A ¢ core charge of species A

Z,,: nuclear charge of species A
Zp(T) = nf/neng

o: fractional gain per unit distance

k' = XAV

®eg: collisional-radiative recombination rate coefficient
A,(T): three-body recoﬁbination rate coefficient of level p
PP(T): radiative recombination rate coefficient of level p
¥: ratio of the specific heats at constant pressure and at

constant volume

Av: linewidth



mn

energy divided by z?

©: energy divided by kT

A: line wavelength in Angstroms

Jat quantum defect of state n

V: 1line frequency

E’P: number of equivalent electrons in state p

Pr normalized population density of level p

SP(E): cross-section for the ionization of state p by electron impact

OP"q(E)’ cross-section for the excitation of the p->q transition

by electron impact

-] : transition integral of the n'A'->n{ transition
nsng
T,: relaxation time of level p

Wy statistical weight of level p
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STATEMENT (F ORIGINALITY
To the best of the author's knowledge, the following investigations
constitute original work performed at the Department of Physics of the

University of Ottawa.

The CR model

The CRmodel is modified for lithium-like ions to account for the
small energy separation of the ground and the first excited states of
these ions. The relatively large population densities of these two sta-
tes (?. and F,_ respectively) as compared to the population densities of
the other excited states ((D‘,) are accounted for in the model by letting

pp be a function of P and Fz, and by introducing-a new population coef-

)

p - The derivation of the systems of equations satisfied by

ficient v

the population coefficients r‘g") , r;') , and r;’) , and the explicit form

of the solutions n,(t), n,(t), and of the collisional-radiative rate
. . cR R . .

coefficients o((;g, o(‘:‘, Sft, SC:, M,,» and M, are also developed in this

work.

Adiabatic cooling of the plasma

The model whicl. simulates the adiabatic cooling of the plasma is also
modified for lithium-like ions. The steady state solution of the rate
equations of the CRmodel is included as an intermediate step in the

cooling process. This permits the determination of the population den-



sities of the ground and the first excited states. In addition, the as-
sumptions and the limitations of the model are considered in greater de-
tail. Detailed calculations are carried out on the lithium-like ions

C IV, NV, and 0 VI, using this model.

Analysis of the inversely populated transitions

A new quantity 's=« &V is introduced to allow for the study of the
fractional gain‘ per unit length («) of the amplifying medium without
knowledge of the 1linewidth (a»). ne-Te diagrams are obtained for the
6L'»54 transitions of C IV which display population inversions under

adiabatic expansion conditions.

Ionization equilibrium

The conditions - under-which-the model of House (1964) can be used to
calculate the ionization equilibrium of a plasma are studied extensive-
1&. The validity condition specified by House is found to be only one
of several conditions which must be satisfied if the model is to provide

good approximations.

Lithium-1like ions

Seaton's Quantum Defect Theory is applied to the 1lithium-like ions
CIV, NV, and O VI. A table of the fit parameters for the s and p
states of these ions, from which the quantum defect function can be cal-
culated for negative and positive energy states of the valence electron,

is provided.



Rate coefficients

A compilation of the data available on the rate coefficients of the
lithium-like ions C IV, NV, and O VI up to 1975 is carried out. A cri-
tical analysis of the formulas available to generate the unknown rate
coefficients is performed. Semi-empirical representations of the lithi-
um-1like cross-sections are developed and tables of fit parameters are
provided to permit the calculation of all needed coefficients from rela-

tively simple but reliable analytical formulas.

Radiative recombination rate coefficients

-

A semi-empirical expression is proposed to represent the photoioniza-
tion cross-sections of the lithium-like ions. An analytical formula to
calculate the radiative recombination rate coefficients is then develop-
ed and tables of fit parameters are given for the 1lithium-like. ions

c IV, NV, and O VI.

Electron impact ionization rate coefficients

Evidence is presented to justify the application of a formula propo-
sed by Lotz (1967, 1968) for ground-state ionization, to the calculation

of ionization rate coefficients of excited states.

Electron impact excitation rate coefficients

Semi-empirical cross-section formulas proposed by Drawin (1963, 1964,
1966) for allowec and forbidden transitions are modified to account for
the finite value of the excitation cross-sections of positively charged
ions at the threshold. Analytical expressions to calculate the rate co-
efficients are then developed and tables of fit parameters are given for

the lithium-like ions C IV, NV, and O VI.



Evaluation of integrals

Accurate analytical approximations to integrals often encountered in
atomic physics have been developed for use on computers. Among the more
important ones, we have

fmxe™q
. X X,
b -%
Sa(ﬂ_nx/x)e dx,
§, E.o0/x dx = €, (o),
where E'(x) is the exponential integral,
Lo -
and Slxﬁe“xdxz S}L(a>

for integral or half-integral, and positive or negative values of/L.



Chapter I

POPULATION DENSITIES OF THE ENERGY LEVELS OF A MONATOMIC PLASMA

1. INTRODUCTION

A plasma consists of one or more elements in various stages of ioni-
zation. Its main constituents are positively charged ions, free elec-
trons, neutral atoms, and electromagnetic radiation from discrete and

continuous spectra.

In this work, we consider a monatomic (element A), stationary, and
spatially homogeneous plasma, free of magnetic fields. Label A refers
to all ionization stages of element A: neutral (A I), singly-ionized
(A IT), doubly-ionized (A III), ... . Element A is characterized by a
density n, can® and a temperature Ta Kelvin , and the free electrons
by a density ne and a temperature Te. Furthermore, each stage of ion-

ization X of element A is characterized by a density n?); then

na=Z nY . | eeo(1.1)

X

All particles of the plasma are assumed to be at the same temperature T:

T=To =Ta eee(1.2)

Under the plasma conditions considered in this work, this is a reasona-
ble approximation, especially since T, is used only to calculate the
ionization equilibrium of element A (see Section 4.2 of this Chapter).

-1 -



2. ENERGY DISTRIBUTION OF THE FREE ELECTRONS

The mass of the electron is much smaller than that of any ion. The
electrons are thus much more mobile than the ions. Their energy distri-
bution in a plasma is described by Maxwell-Boltzmann statistics:

dne
:e = {,,(0) 46 .l (1.3)

where fMB(e) is the Maxwell-Boltzmann distribution function

fMa(‘e) = I%r' 6" e e (1.4)
6=E/kT, cer (1.5)

E is the free electron kinetic energy, and k is Boltzmann's constant.

This distribution function holds if the mean de Broglie wavelength of
the plasma electrons is appreciably smaller than the mean distance bet-
ween them (Vedenov, 1965, p.235). As derived in Appendix A, this puts
an approximate upper limit on ne of

Ne « 1.2 x 10'° T cem2 cea(1.6)

This condition is illustrated graphically in Fig.A.l. In all cases stu-

died in this work, we are well below this upper limit of validity.

An approximate lower limit of validity can be derived as follows. 2aAn

electronic Maxwellian distribution will hold if a sufficient number of
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elastic collisions occurs between the free electrons to allow enough
energy exchanges between them to establish a Maxwellian energy distribu-
tion. This will be the case if the plasma is sufficiently dense. A
crude estimate of the lower 1limiting value of ne is accordingly
obtained in Appendix A and illustrated graphically in Fig.A.l as a func-
tion of T for atomic hydrogen, for a hydrogenic ion with 2 = 14, and for
the lithium-like ion C IV. For a hydrogenic or lithium-like plasma with

na = 18" a3, the distribution will be close to Maxwellian if

Ne > 10° em™@, eea(1.7)

Since we consider plasmas with
Ne ~ 107 - 10" cm™ .ee(1.8)

we expect the Maxwellian distribution to be a reasonable approximation
to the actual distribution function of the free electrons in the plasma.
A sufficiently dense plasma also insures that the time of response of
the distribution to a change in the plasma parameters is sufficiently

rapid that the distribution remains Maxwellian at all times.

However, the validity conditions can be.quite complex and departures
from a Maxwellian distribution are possible even if egs.(1.6) and (1.7)
are valid. Recent work (Shoub, 1977) suggests that departures from a
free electron Maxwellian distribution in a pure hydrogen gas can occur
in the high-energy tail of the distribution if the ionization level is

very low {(n,/n, £ 1% ) and if the ground state population is far from
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its equilibrium value. Drawin (1975, p.596) also mentions that
departures are possible when the degree of ionization is smaller than
approximately #.5%. Some additional work on this subject may be found
in Oxenius (1970a, b), Shaw et al. (197¢a, b), Suckewer (1978), and

Drawin (197¢a, 1971).

3. EQUILIBRIUM POPULATION OF THE LEVELS

3.1. The Local Thermodynamic Equilibrium (LTE) model

Plasmas in complete thermodynamic equilibrium (CTE) only exist under
very special conditions and are thus very rarely observed. However,
there exists a large class of plasmas in which each volume element ful-
fills all thermodynamic equilibrium laws derived for plasmas in CTE
except for Planck's radiation law. Such plasmas are said to be in local

thermodynamic equilibrium (LTE).

In these plasmas, the level population densities are determined
solely by collisional .processes which are assumed to occur rapidly
enough that the population densities respond instantaneously to any
change in the plasma conditions. The population densities thus depend
entirely on local values of the plasma parameters. Furthermore, each
physical process is then accompanied by its‘inverse and, by the princi-
ple of detailed balancing (see Section 6 of Chapter II), these pairs of
processes occur at equal rates. The advantage of this model is that the
atomic cross—sections of the various physical processes are not needed
to calculate the population densities. These are determined solely by

the laws of statistical mechanics which we now consider.



3.2. The Boltzmann equation

Consider a particular ioniéation stage of element A which we label X.
We then use "ion X" to denote the X-times ionized atom of element A.
Its total electric charge is +Xe where e is the electronic charge. We
label two states of ion X as p and g; P 29 unless otherwise indicated.
The ground state is labelled as 1, the first excited state as 2, and so

on in order of increasing level energy.

The nunber of ions X that have an electron in state q relative to
those with an electron in state p (p < @) is then given by the Boltzmann

equation (Novotny, 1973, p.108)

) - ) T
Nq  _ wa Era /K eea(1.9)
ny? wp

where n?) and tﬁ?‘ are the population densities of ions X with an elec-

o)

tron in levels g and p respectively, os?> and w,’ are the corresponding

statistical weights,

(x)

x) —(x)
Etq = Ep ~Eq cee (1.10)

is the energy separation of levels p and q, and E(;) and E? are the
absolute values of the energy eigenvalues of levels q and p respec-
tively. The Boltzmann eguation can also be written as the fraction of

ions X that have an electron in state p:

(x)
nY _ wp By /KT e (1.11)
n(i) - u“")
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where n™ is the population density of ion X and u® is the partition

function of ion X:

-E /RT

u?- T wy’ € .ee(1.12)

q.l

Its evaluation is discussed in Appendix B.

3.3. The Saha equation

The Saha equation (UnsBld, 1977, p.154; Griem, 1964, p.135) can be
formulated in many ways. In general, it gives the relative population
densities of various stages of ionization of an element. The following

examples illustrate its use.

The relative population densities of ions X and X+1 1in their ground

states are given by

Y . )
NS ne WY 2(ammkT i /KT vee(1.13)
n> T W h* c

where I(,x) is the ionization potential of ion X in its ground state and
all other symbols have their usual meaning. The relative densities of

ions X and X+1 in various states are given by

I(x)+ELx+t)
x+1) C 3/2 -P 19
V\(;“ Ne wq"') z(lvka) kT ..o (1.14)
T WP h?

x) . s . X . . . .
where I’l’ is the ionization potential of ion X in excited state p and

¢ 7Y))
Elq is the energy separation of the ground and the q"‘ state of ion

X+l. The relative densities of all ions X and X+1 are given by



x)
nuﬂ) re u(xﬂ) 2 (27 m kT) 3/2 ~-IX/RT

-

* L ] l.l
ntx) - uu) hs ( 5)

Various combinations of these equations produce alternate forms of the

Saha equation.

In this work, the equation is used as follows. Since we concentrate
on one particular ionization stage (X) of element A, we simplify the

notation by neglecting the superscript X. The various symbols then

become:
n$° —_— nP: population density of level p;
n* s N : ionic density;

X) . . .
QJ; —> W,: statistical weight of level p;

u* W;: ionic partition function;
(x)
" —> I,: ionization potential of state p.
Combining egs.(1.14) and (1.15) we then obtain the following form of the

Saha equation:
ng = Z.(T)nin, eee(1.16)

where Ny is the Saha equilibrium population density of level p and

- We h3 IP/kT
Z, (T) = " Tmernya C eee (1.17)
Numerically,
-le T,/RT
Z,(T) = 2.071 x 10 We g7t .o (1.18)

T 3/2 u'l'.
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For hydrogenic ions, W; 1is the partition function of the bare nucleus

and, as discussed in Appendix B,

U; >, ees(1.19)

The same holds for lithium-like 1ions since WU; is then the partition

function of a closed shell ion.

3.4. Validity of the LTE model

A combination of the Boltzmann and Saha equations completely des-
cribes the population densities of the energy levels of a monatomic
plasma in LTE. The conditions under which such a description is valid
have been investigated extensively. Examples of the work that has been
carried on include Bdhm (1960) who discusses the validity of the Boltz-
mann equation (p.194), the Saha equation (p.l19d), and the LTE model
(p.96), Griem (1964, p.145), Mcwhirter (1965, p.205), and Drawin (1975,

p.591).

The conditions under which the LTE model is valid are complex. How-
ever, a simple but crude criterion can be obtained by considering the
fact that LTE conditions will prevail if the plasma is dominated by col-
lisional processes. Thus there is a lower limiting value of Ne below
which radiative processes.are not negligible and LTE is not valid. This
approach is used by Mchirter (1965, p.26) to derive the values of ne
above which radiative processes cause less than a 19% departure of the
‘plasma from LTE. For T in Kelvin and E§q in eV, this condition is

given by



Ne = 1.6x 10 JT E‘fq em™3 vee(1.20)

for all values of p and g. This criterion is least likely to be satis-
fied for the largest energy gap in the term scheme of the ion consid-
ered. For hydrogen, the largest energy gap lies between states 1 and 2:

E.z = 16.2 eV. Thus a hydrogenic plasma will be in LTE for

Ne 7 1LTx 10° NT em™3, el (1.21)

The upper limiting value of ne above which LTE is not valid can be
obtained from the validity conditions of the Boltzmann and Saha equa-
tions. The applicability of these two equations is limited hy the val-
idity conditions of Maxwell-Boltzmann statisti;s. As derived in Appen-
dix A, the upper limit on n, is thus given by eq.(1.6), viz.

Ne <€ L2x10'S T3 (3

3

The limits given by egs.(1.21) and (1.6) are illustrated graphically
in Fig.l.1l. As can also be seen in this figure, the free electron der~-
sities of the plasmas studied in this work,‘ and given by eq.(1.8), are
well outside the domain of applicability of the LTE model. This model
is thus not useful to us as a general plasma model; however, its value
lies in the fact that it can be applied to high-lying quantum states.
This is due to the fact that collision cross-sections increase rapidly

as the principal quantum number increases, whereas radiative decay rates
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decrease under such conditions. A level is thus evéhtually reached for
which collisional processes dominate the population of the levels. Then
all excited states lying between the ionization limit and this lowest
LTE state are in LTE and their population densities can be obtained from
the Boltzmann and Saha equations (Giovanelli, 1948; Drawin, 1975,
P.595). A crude estimate of the limit of validity of this approach can
be obtained by applying McWhirter's criterion, eq.(1.20). For example,
suppose we wish to take level 10 as the lowest LTE state of a hydrogen
plasma. Then since the largest energy gap in the term scheme of hydro-
gen above level 10 1lies between states 10 and 11 for which
E,n = €.0236 eV, the value of ne above which the radiative processes
will cause less than a 19% departure of the population of level 17 from

LTE is given by
Ne » 2.1 %107 JT em™3, e.(1.22)

This lower limit is also shown in Fig.l.1l. We see that this approach

can be very useful for the plasmas considered in this work.

4. NON-EQUILIBRIUM POPULATION OF THE LEVELS

4.1. The Collisional-Radiative (CR) model

4.1.a. Introduction
Plasmas that do not obey the LTE model are called non-LTE plasmas.

The population densities of the energy levels of ions in non~-LTE plasmas
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must be obtained from the rate coefficients of the individual colli-
sional and radiative processes occurring within the plasma. Several
models which take into account some or most of these processes have been
proposed; of these, the most useful and general is the Collisional-Radi-

ative (CR) model.

This model was first proposed and applied to hydrogenic ions by Bates
et al. (1962a, b). It was subsequently used by Bates and King-
ston (1963) and McWhirter and Hearn (1963). Since then, much work has
been done on and with the CR model, too numerous to be all mentioned in
this work. Drawin (1969) reformulated the model within the context of
the Boltzmann collision equation. It was first applied to helium by
Drawin and Emard (1970), to lithium by Gordiets et al. (1968), and to
cesium by Norcross and Stone (1968). Fujimoto et al. (1972) performed
calculations on hydrogenic ions with the best data available on the rate
coefficients; they published extensive tables of results and discussed
these at length. We thus follow their notation as closely as possible.
Stevefelt and Robben (1572) found that the collisional-radiative recom-
bination coefficients calculated by Bates et al. (1962a, b) with the CR
model agree within a factor of two with experimental values they
obtained for helium plasmas. This agreement is reasonable, especially
since Bates et al. (1962a, b) calculated ail electron impact cross—-sec-
tions with classical formulas given by Gryzinski (1959). The CR model
can thus be expected to provide a reasonable description of certain
types of non-LTE plasmas; these are specified in Section 4.1.h of this

Chapter.
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4.1.b. Physical processes occurring in a plasma
Let e denote an electron, hv a photon, and hd; an X-times ionized
atom (ion X) in state p. Then the physical processes occurring within
the plasma and included in the CR model can be described as follows
(these are schematically represented in Fig.l.2):

i. Collisional ionization by electron impact:

N, +e = N" +e+e, ven(1.23)
The rate coefficient of this process is denoted by:

Sp(T) em®s™t, ven(1.24)

The number of such processes occurring per unit volume per unit time is

given by:

nyne S,(T) em™ 57, ... (1.25)

ii. Three-body recombinaticn: inverse of process (i):

Nx*-.+e+e_-,,;\3§ + e, ‘ ... (1.26)
Rate coefficient: cXP(T) cmés™ . ees(1.27)
Number of processes: ni n o(r,("r) m> st oo (1.28)

iii. Radiative recombination: predominates over process (ii) in low-den-

sity plasmas:
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FIGURE 1.2 - PHYSICAL PROCESSES OCCURRING IN A PLASMA.
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N+ e — Np + ho, eee(1.29)
Rate coefficient: R (T) cmi3s™' ., eeo(1.30)
Number of processes: neni p,(T) an® s, Cee.(1.31)

iv. Collisional excitation by electron impact (p < g):

X
Ny, +e =N + e, .ee(1.32)
Rate coefficient: C’P""\(T) cm®s™'. ees(1.33)
Number of processes: N Ne CP-’q (TY om3s'. veo(1.34)
v. Collisional de—-excitation by electron impact (p < g): inverse of

process (iv):

Ny +e—=>N; + e, ‘ .o (1.35)
Rate coefficient: Fq_,P(T) cam3s™, veo(1.36)
Number of processes: hgqfe qu?(r) cm™3s7' . eee(1.37)

vi. Spontaneous transition (p < q):

N:; — NI + ho, ... (1.38)
Einstein probability coefficient: A‘I"’P s7'. eee(1.39)
Number of processes: Ng A‘l"? s, eeo(1.48)

These are the main physical processes which occur in a plasma under
most conditions. Other processes are possible, but since they occur

less frequently, they are neglected. For example, all processes involv-



16
ing electron transitions due to heavy particle collisions such as
proton-atom, proton-ion, atom-atom, atom-ion, or ion-ion collisions are
neglected. However, the effect of some types of heavy particle colli-
sions has been investigated by Drawin (196%a, b), Drawin ' and

Emard (1974), and others.

For the sake of simplicity, the plasma is also assumed to be opti-
cally thin such that all radiation emitted within the plasma escapes
without being absorbed. The following physical processes are thus
neglected:

vii. Photoexcitation (p < q): inverse of process (vi):
X x
Ny +ho — Ng. .ee(1.41)
viii. Photoionization: inverse of process (iii):

N’P‘ +ho =N + e, .ee(1.42)
However, plasmas in which radiation absorption occurs are important and
have been investigated by many workers. For example, Bates et
al., (1962b) consider a hydrogenic plasma which is optically thick toward
the lines of certain series. Drawin (1969%a, b, ¢, 1972b) and Drawin and
Emard (1970, 1972, 1973, 1974) have investigated radiation absorption in
non-LTE plasmas extensively. The effects of radiation absorption are

numerous and very complex.
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4.1.c. Equations governing the level population densities
We consider 1level p of 1ion X and look at the processes of Fig.l.2
which contribute to the filling or emptying of 1level p as shown in
Fig.1l.3. The differential equation describing the time variation of the

population density of level p is given by

d"a _ electrons enteﬂvxg) _ (e,’s leaving ... (1.43)
dt level p level p

The terms of eq.(1.43) in parentheses include contributions from all
levels g < p, 9 > p, and continuum states. Using egs.(1.25), (1.28),
(1.31), (1.34), (1.37), and (1.40) to include all the processes of

Fig.1l.3 in eq.(1.43), we obtain the differential equation

* P—l
np = ﬁzs‘ Cq-oF neY\ﬂ

- - -1
_{[2; FP-'ﬂ +SP+¢1=ZP“CP"‘!] e +‘1Z=; Apsq } Ny

+ ﬁ (XP Ne + éF} ne, Vli, ees (1.44)

vhere the dot over n, represents differentiation with respect to time.
There is such an equation for each and every level p=1, 2, ...,c0 of
ion X. We thus obtain an infinite number of coupled first order differ-

ential equations in the population densities of the discrete levels of

ion X.

The normalized population density of level p is defined by
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Y .o (1.45)
pr = ng
where ni is the Saha equilibrium value of the population density of
level p given by eq.(1.16). Dividing eq.(1.44) by n? and using
ed.(1.45), the set of equations (1.44j becomes

p-! ne

pr = 17?. Cave iy ng e Pa

b =
"{[ZFF., +S + Z_CF-';1]ne+l AP—’Q}QF

9=t 9=pn 9=
o € €
+ ALY LY
+{°< Ne + By n—eg- 3 P12, ., 02, ... (1.46)
ne ,

For levels in LTE, detailed balancing between the collisional excitation

and de—-excitation processes holds; then
3 = nE
nq Fﬂ_>P HP CF—)q, 000(1.47)

Using egs.(1.47) and (1.16), éq.(l.46) becomes

‘!

_lL[iZ FP"‘I + S + q‘[;“(’,},,,q] Ne + Z A,,.,1 }fe
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+—z—'-;'(o<pv\e +PP} > p= 2, ..., % ...(1.48)

As mentioned previously in Section 3.4 of this Chapter, there exists
a high-lying quantum state r above which the discrete lavels are in LTE.

The population density of these levels is then given by

P,m =1, .e.(1.49)

The infinite set of equations (1.48) thus becomes a finite set of r cou-
pled equations which can be solved for ?P, p=1, 2, eesy Y. The
infinite sums appearing in eq.(1.48) can be cut off at a sufficiently
high-lying level s > r above which the rate coefficients involving these
states contribute little to the infinite sums of eq.(1.48). The sat of

equations (1.48) then becomes

- 3 -1
{1z Frng sf+q§+‘c$,,,,,l]m+:z; Ar—ﬂ}??
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4.1.d. Solution of the system of equations (1.50)

The exact solution of the system of equations (1.58), Pp(i:) , the
time evolution of the population densities of levels p=1, 2, ..., r of
ion X, is very difficult to obtain. It requires a set of initial condi-
tions P"<t = O) and can only be calculated numerically. Such a
solution would be time consuming and of limited use. A simpler solu-
tion, known as the quasi-steady state (QSS) approximation, holds for a
large class of plasmas and is used extensively in the literature (Bates
et al. 1962a, b, and subsequent papers mentioned previously in Section

4.1.a of this Chapter).

The simplest solution to the set of equations (1.50) is the steady

state (SS) solution which is obtained by putting
¢SS _ R
prit) =0 5p=1,2..,r. ~ | eee(1.51)

This time-independent solution holds when the rate at which the elec-
trons enter level p eqﬁéls the rate at which they leave level p. Once
the steady state solution is established, a perturbation of the popula-
tion density of level p will be followed by a return to its steady state

“value in a time of order

pot S p-t }“'
t,~i[q§__‘.| FP_,G‘+S?+(1§_P“CP»,1]YIQ +‘1Zﬂ Apaqg . vea(1.52)

t? is the relaxation time of level p. McWhirter and Hearn (1963) have

calculated Z:P for a wide range of plasma parameters. They conclude

that the relaxation time of the ground state is always much greater than
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that of any of the excited states, even if the plasma 1is not near its
steady state. This is due to two main reasons: a) the electron colli-
sion rate coefficients between excited states are much greater than
those involving the ground state; b) the ground state cennot decay by
spontaneous radiative transitions. Consequently, the population densi-
ties of the excited levels of ion X come into equilibrium with particu-
lar values of the population densities of the grcund state, of the free
electrons, and of the ions X+l in a time which is very short as compared
to the ground state relaxation time. This is the basis of the 0SS solu-

tion.

4.1.e. The population coefficients
We thus express the population densities of the excited states as a

function of the ground state population density:

o) )

fP= Y‘P -&-—Y“> ¢S P-—- z2,3 ...,". ess(1.53)
,.go and r;” are called the population coefficients of level p. Furth-

ermore, since the population densities of the excited states are in
equilibrium with that of the ground state, we solve the system of cou-

pled equations (1.5@) by putting

Eyz.z =0 .o (1.54)

and é, # O eee (1.55)
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since, in general, the ground state is not in equilibrium. In our cal-
culations, we also assume that the free electron and ionic densities,
Ne and n; respectively, do not change substantially during the time of
establishment of the (Q8S. This restricts the applicability of the
approximation and is discussed more extensively in Section 4.1.h of this

Chapter.

Substituting the trial solution (1.53) in the system of equations

(1.50), and using the condition (1.54), we obtain

P
[ (o)
£, Fpoq e

S - A(0)
{[qu FP"'? + SP+(1=ZF“CP_;1] hc + cf{_‘ AP"‘}} Yo

Z. o
~l—2:’m1((’],_m1 Ne + %3 A‘?-"P} r()

s
+Q‘=Zmi(‘,§,,,1 Ne + —g—i Aqmrp } + -é—P io(Pne +€P}]
[ Fpag Nery”

q'ﬂ

-t RO
—’tié e T Sy + Z‘ch>1]ne *Z Apaqt 1y

+ ) 2, 70, -0 3p-
qg—;ﬂ[lc""ﬁ He‘*'z,, Aﬁ-’p} rq ?u O 3p=2,3,.,% ...(1.5)

This set of equations is of the form

a, + bp i =0 3 p=2,3,..., " .o e (1.57)
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The general solution of eq.(1.57), for an arbitrary value of P" is
Ql,:O

b, =0, ‘ ... (1.58)

Before proceeding with the solution of eq.(1.58), certain limiting con-

(o)

ditions must be imposed on the population coefficients re

Q)]
and ¢ P
corresponding to the cases when p=1 and p > r. Substituting p =1 in

ed.(1.53), we obtain the condition

r =g, ... (1.59)

The other condition, which is obtained by putting p > r in eq.(1.53),

has already been imposed on the set of equations (1.56):

(o)

TP)Y‘ = \
v <o (1.69)
P," . o o8 *

Substituting for a, and b, in eq.(1.58) from eq.(1.56), and imposing
the condition {(1.59), we obtain the followfng two sets of r-1 equations

in the population coefficients rgﬁ and r”s) respectively:

[}
)
Z,:z Fparq Ne Vq

- . - o
—H‘zl Fpaq + Sp 1%,,,,(“""‘1] e ?,, AP*ﬂ } r;
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r 0)
+ 2 ic?"%he‘“‘%‘i Aﬁ"’P} h; = ‘%Pll‘x}»m—"’@y}

1=P+l
Z 4 2
- Comag Ne + =2 A, : ee. (1.61)
qevr P9 Z, A‘i P} >
P—l
)

§72 Fpmq ne g

-t > £ o)
“ll[.%?. Fraq + S +ﬁ2._:f,+,cr—>a] he + L Ay J 15

L Z %))
+ Z C - "e -+ = A —> } r
w“[t pq Z, 9pJ M

=-Fiai e 5 p=2,3,.. 0, .o (1.62)

4.1.f. The population densities

Once the population coefficients rs” and v have been oStained
from the sets of equations (1.61) and (1.62) respectively, they are sub-
stituted in eq.(1.53). For any value of P s the population densities

?P can then be calculated. From egs.(1.45) and (1.16),

—_— s ses (1.63
n; Ne ’ ( )
substituting eq.(1.63) in eq.(1.53), we obtain

()
P

2 o)
Rl 4 . = v eee(l.64
+Zn )y b2, (1.64)

3 y ey’ e
[}

Yll,=Z n-nef‘

P [
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As required by the QSS approximation, the population density of the

excited state p depends on the value of the ground state population den-

sity n,, the free electron density n,, and the ionic density n;. The
population density per unit statistical weight is given by

oy

Yp = ZJ; .ee(1.65)

where w, is the statistical weight of level p. The population density

per unit statistical weight must be used when the population densities

of different states are compared.

4.1.g. The collisional-radiative rate coefficients

The time evolution of the population density of the ground state can
be studied with eq.(1.58) when p = 1. Substituting for PP from
eq.(1.53), and using the previously calculatéd population coefficients
and eq.(1.45), we obtain the differential equation

L]

n' = - SC—R ne n' +‘ “CR Y\e n&. ...(1066)

Scq and K gare called the collisional-radiative ionization and recom-
bination rate coefficients respectively. They are the effective ioniza-
tion and recombination rate coefficients of the plasma. They are
related to the individual atomic rate coefficients by the following

expressions:



27

—_— w
T Zine %‘z 2 (F Fqai Ne *’Aq-n) Yq 3 o (1.67)
(0)
Keg = 0<;ﬂe,+‘§ + Z 221 (r:q-n n€.+Ac\—9|) . eee(1.68)

The solution of eq.(1.66) can easily be shown to be given by

-SkﬂVk '
(t)—““n + [n.(t o)-“c’*n] . .ee(1.69)

The steady state population density of the ground state 1is obtained in

the limit t -> o :

3<
n, = X8 op, oo (1.70)

4.1.h. Validity of the QSS approximation

The 0SS approximation 1is based on the fact that the relaxation time
of the ground state 1is greater than that of any of the excited states.
Thus as the population density of the ground state changes, the popula-
tion densities of the excited states respond in a comparatively very
short time and remain in equilibrium with the ground state population
density, the free electron density, and the ionic density. McWhirter
and Hearn (1963) state that such 1is always the case, even when the
plasma is not near its steady state. However, since we assune that n,
and Ny remain constant during the time of establishment of the (QSS, the

approximation will break down under certain plasma conditions.
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According to McWhirter and Hearn (1963), this will occur when the
total population density of the discrete excited states is greater than
the population density of the ions in the next stage of ionization.
Then if a change in the plasma conditions occurs, a large proportion of
electrons may pass between the continuum and the bound 1levels and sub-
stantially change the value of W, or ny. The @SS approximation for

constant N, and n; is thus valid if

o

PZZHP <N, for n-=o, oo (1.71)

Substituting eq.(1.64) in eq.{(1.71), we get

oD e)
Ne 2. Z,ry <1, cee(1.72)
p=2

Other conditions must also hold for the approximation to be valid:
Npgr < Ne s oo (1.73)
Npser <& Ny, oo (1.74)
From eq.(1.73), Bates et al. (1962b) derive the validity condition
14 + (Rog T =3}/ 20g 2
Ne < 10 cm™3 eeo (1.75)
which is satisfied by all but very dense plasmas. Eq.(1.74) holds if

the mean thermal energy of the free electrons is much less than the

first excitation energy of the ion considered:



29
Jz_mN.éz < El,l. ..0(1.76)

Substituting the average velocity of a Maxwellian velocity distribution

of the free electrons

A SRT
Ne = ,/-————Wm eee(1.77)

in eq.(1.76), we obtain the condition

T <00 E,, K .ee(1.78)
where E, , is iﬁ eV. For hydrogenic ions, eq.(1.78) becomes

T < 93,000 2% K ‘ vee (1.79)

and for lithium-like ions, with the 2p - 3s excitation energy,

CN ! T< 200,000 K

> eeo(1.89)
NY! T< 420,000 K ; ees(1.81)
oVi: T < ¢00,000 K, .ee(1.82)

The conditions (1.75) and (1.79) are displayed graphically in Fig.l.4
for a hydrogen plasma. In general, the (@3S approximation for constant

Ne and n; will not hold for very dense and very hot plasmas.
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4.2. Calculation of the ionization equilibrium

4.2.a. The model

The relative population densities of various stages of ionization of
a monatomic non-LTE plasma under statistical equilibrium are calculated
approximately with the model of House (1964). Even though the calcula—
tions are highly simplified, the model provides a first approximation to
the ionization equilibrium of monatomic plasmas of hydrogen to iron and
a general method of obtaining a consistent set of relative population

densities for the ionization stages of these elements.

Since the plasma is not in LTE, the individual physical processes
contributing to the ionization equilibrium must be considered. The
model is based on the following assumptions: = Each stage of ionization
of element A consists of only a ground state and a continuum. ‘'The mona-
tomic plasma is optically thin. Thus the only processes that control
the ionization equilibrium are collisional ionization by electron
impact, three-body recombination, and radiative recombination; photoion-
ization is absent. Furthermore, since excited states are not consid-
ered, any ionization or recombination process occurring through these
states is neglected and, under certain cénditions, can restrict the

applicability of the model.



4.2.b. Ionization equilibrium equations
Let the rate coefficient for ionization of the X-times ionized atom
(ion X) of element A be denoted by R, _,,,, and that for recombination

of ion X+l by R Then under statistical equilibrium, we have

X+y~» X *

¢3) — an (XH1)
n Rx—»xﬂ = n"t Rx-u—-»x ees(1.83)

wvhere n® and n“**'Y are the densities of ions X and X+l respec-
tively. We denote the rate coefficients for the individual processes

included in the model as follows:

. . . . - . - . | .

i. collisional ionization of ion X: Seoxat ; .o (1.84)
ii. radiative recombination of ion X+1: @'x“_’x 3 ...(1.85)
iii. three-body recombination of ion X+1: %y oy ves(1.86)

The prime on these coefficients indicates that they are not defined as
those used in the CR model; they are equivaleﬁt to the CR model coeffi-
cients multiplied by n, ( n:‘ for °(‘x4.-»x)' Substituting the rate
coefficients (1.84), (1.85), and (1.86) into eq.(1.83), we get

X+)1-p X

[} '
NP s, =n= [ Breiwx + ' 1. .e.(1.87)

We use simple but very approximate expréssions for the rate coeffi-
cients of eq.{1.87). The advantage of such an approach is that general
calculations can be performed without considering each ion individually.
The collisional ionization rate coefficient is calculated with the fol-

lowing simple approximate formula (Allen, 1961):

- I /kRTe
S! = 14S x 107" &,,,,“,%;-L ne Ve € ...(1.88)
x

X=» X+t
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where Z, is the number of electrons in the outer shell of ion X, I, is

the ionization potential of ion X in eV,
= 1.2 0.1
J(,..,m = 3.1 - il ... (1.89)

ZEK is the core charge of ion X, and all other symbels have their usual
meaning. The three-body recombination rate coefficient is obtained from
the collisional ionization rate coefficient since they are inverse pro-

cesses. Under LﬂTﬁconditiOns, we have

) 1 Cx+ 1) i
nSAHA Sx-a»x+| = nSAﬂA (XXH—»x . ...(1.9@)
Thus
Y\“) t
' SAHA
K srrmx =~ Dk ... (1.91)
SAHA

(X+1)
SAWUA

€ . . . .
where nsiia /N is given by eq.(1.15). Using eq.(1.99) insures
that when the population densities approach their LTE value, statistical
equilibrium is maintained. The radiative recombination rate coeffi-

cient, in the hydrogenic approximation, is given by the approximate for-

mula (Elwert, 1952):

Y;
! -— -4 I * I ¥ X' b (-L.
éx_'_‘_’x — S.ILX !O 5" (‘?;ge‘) "f‘f‘ ﬂsq ne_ C" kTe) s 00&(1.92)
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where 1, is the ionization potential of hydrogen, n;d is the quantum

number of the ground state of ion X,
X -
G, (x) = X €7 E, (x), cen(1.93)

E,(x) is the exponential integral, j" =0¢.8, g=3(g=4 for
iron), and all other symbols have their usual meaning. The values of

f, and g come from Allen (1961).

The fraction of the atoms of element A that have been ionized X times
is given by n*/ 2;\q<“) . This quantity is plotted in Fig.1.5 as a
function of temperature for carbon at Mg = 1@‘5 an™®, The values of
the parameters used in egs.(1.88) to (1.92) to calculate these curves

are given in Tab.1l.1.

4.2.c, Validity of the model

House (1964) states that, 1in general, the calculations should apply

to plasmas with

S -
Ne ¢ 10 cm™3 ... (1.94)

lg!é\

]

and, in many cases, to values of up to e - 10" an”3. However,
more stringent validity conditions may be necessary due to the assump-
tion that each ionization stage consists only of a ground state and a

continuum,
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An ion can be approximated by a single bound state if the population
density of the ground state is much greater than that of any excited

state:

NS> Npwy ver(1.95)

As mentioned previously in Section 4.1.h of this Chapter, this will hold
if the average kinetic energy of the free electrons is less than the
energy separation of levels 1 and 2. The validity of this approximation

is thus given by eq.(1.78):

T< a0 E,, K

where E,, is in eV. Special cases of this equation for hydrogenic and

lithium-like ions are given in egs.(1.79) to (1.82).

The approximation of a singlé—state ion also neglects all ionization
and recombination processes which occur through an excited state. For
example, ionization from the ground state may occur by excitation to
state p followed by 1ionization from state p; recombination into the
ground state may occur by recombination into excited state p followed by
de-excitation to the ground state. The approximation is thus valid if
direct ionization or recombination to the ground state occurs more
rapidly than through an excited state. The relaxation time of the one-
step processes must thus be much smaller than that of the two-step pro-

cesses:

T, &K Ty + T, eee(1.95)
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where T, is the relaxation time for an electron to enter or leave state
p and T,p, for an electron to make a transition from the ground state to
the excited state p or vice versa. Calculating the relaxation times
from the corresponding rate coefficients, we find in general that condi-
tion (1.96) is valid for all states p > Pmin Wwhere pui, is a function
of T. For hydrogen, one-step processes occur at least ten times faster

than two-step processes,
T, ¢ (T, + T,)/10, .o (1.97)

above the following values of Pmin®

| T I Pmin '

| 40060 K | 5 |

| 32000 K | 4 I

| 256000 K | 3 | e (1.98)

For levels below Pmin ¢ the relaxation times become comparable and even-
tually, two-step processes predominate over one-step processes. How—
ever, since the values of the coefficients used in these model calcula-
tions are very approximate, the additional complications introduced in
the model by including the first few low-lying levels in the calcula-

tions are not justified.

Conditions (1.78) and (1.98) are valid if n, satisfies the validity
condition (1.94) given by House (1964). For values of ne greater than
those of eq.(1.94), the recombination of a free electron into an excited

state p with a subsequent de-excitation to the ground state occurs
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faster than direct recombination into the ground state. The model thus
breaks down at high values of ne. It should also be noted that for
lithium-1like ions, larger errors may result from the use of the model,
due to the small energy separation of the ground and the first excited

states.

5. POPULATION INVERSIONS IN PLASMAS COOLED BY ADIABATIC EXPANSION

5.1. Introduction

The possibility of using a recombining plasma as an amplifying medium
of electromagnetic radiation was first suggested by Gudzenko and Shele-
pin (1963). Calculations performed on a hydrogen plasma by Gudzenko and
Shelepin (1965) and Gudzenko et al. (1967) subsequently confirmed this
suggestion. Since then, elements with more complex electron structures
have been investiéated: for example, lithium by Gordiets et al. (1968)
and argon by Gordiets et al. (1971). Such plasmas are called plasma

lasers (Gudzenko et al., 1974).

5.2. Plasma lasers

We consider the basic principles of operation of a plasma laser. As
discussed in Appendix A, the mean time between electron collisions det-
ermines the rate of establishment of the electron temperature within a
plasma. The smallness of the time between elastic collisions in a dense
plasma thus makes it possible, in principle, to rapidly reduce the elec-
tron temperature of such a plasma (see edq.A.7). For example, in plasma

densities of order n; ~ nc_mfl@'s - 19" ®, a single distribution of
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-4 -\Q

the electrons 1is established in a time of order T ~ 18 - 10 s

(Gudzenko and Shelepin, 1963).

Rapid cooling of a strongly ionized plasma results in rapid recombi-
nation of the-electrons and the ions into highly excited atomic states.
The subsequent relaxation of the electrons to the ground state by spon—
taneous and non-radiative transitions occurs in a time which, for the
estimated values of the plasma parameters ‘used in this work, is larger
than 1977 s. At these densities, electron—-ion recombination occurs by
three-body recombination in a time shorter than 16”7 s such that a rapid
filling-up of the upper excited levels of the ions occurs. Furthermore,
since recombination into.highly excited states occurs much more rapidly
than into lower states, the establishment of large population inversions

is_favored.

When large population inversions have been established in the excited
levels, the plasma is said to be in a stationary drainage state. It is
still substantially ionized. As an example of the times involved, Gud-
zenko and Shelepin (1965) find that for a dense low temperature plasma
(Te~ 1000 - 6008 K and n, - bound and free states ~ 18° -
18" an™®), cooled by a factor of twenty, stationary drainage of the
excited discrete levels is established in a time ~18"' - 10" s. Sta-
tionary drainage is maintained for a time ~10”° s, and is followed by
a stage in which the plasma is weakly ionized and the population densi-
ties of its levels return to ndrmal. Gudzenko et al. (1967) f£find that

the above conditions can be significantly relaxed; for example, the

cooling can be done more slowly or by stages.
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5.3. Adiabatic cooling of a plasma

Various mechanisms of free electron cooling can be used. Several of
these were first considered by Gordiets et al. (1966): cooling of the
free electrons by elastic collisions with heavy particles and by diffu-
sion of the electrons to the container walls. The method of interest to
us, rapid cooling of a plasma by adiabatic expansion, was first investi-
gated by Gudzenko et al. (1966) both for magnetized and unmagnetized

plasmas.

An example of this cooling mechanism is the adiabatic expansion of a
plasma jet in a vacuum. The advantage of this method is that continuous
amplification, and thus continuous operation of a laser is possible due
to the fact that the different stages of the recombining plasma decay at
different times. Thus, as the plasma expands, the stages of the recom-
bination process outlined previously (see Section 5.2 of this Chapter)
are spread over space and the de—excited medium is thus removed from the
active lasing zone. Experimental evidence of laser action due to the
adiabatic expansion of highly ionized hydrogen or hydrogenic plasmas has
been given by the following workers: Gol'dfarb et al. (1966), Gol'dfarb
et al. (1969), Hoffmann and Bohn (1972), Irons and Peacock (1974),

Dewhurst et al. (1976), and Sato et al. (1977).

Under adiabatic expansion conditions, the density n and the tempera-

ture T of a gas are related by (Gudzenko et al., 1967)

Thn'"¥ = constant oo (1.99)

vhere ¥ = ¢,/ £, ..o (1.109)
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is the ratio of the specific heat at constant pressure ., and the spe-
cific heat at constant volume ., . For a monatomic gas and for a fully

ionized plasma of hydrogen, we use (Gudzenko et al., 1967)

¥ = 5/3. eee (1.101)
However, it should be noted that the actual value of ¥ for a plasma is
lower than 5/3. Denoting the initial density and temperature of the

plasma by n® and T° respectively, and the final density and temperature

by n and T respectively, we characterize the expansion by the factor
- n
fe =4 > vee(1.102)
and the ensuing cooling of the plasma by the factor
I’
fc—-rr- > v (1.1063)
Then from eq.(1.99), we have the relation
§ 7 1.104
5. = I, , .o e (1.104)

under adiabatic expansion conditions. In this work, we use fc = 5;

then from egs.(1.104) and (1.101), ¥ = 11.2.
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5.4. Model calculations

We consider a monatomic, unmagnetized, stationary and spatially homo-

o 4
geneous plasma characterized initially by a density N\, = 15" an™?®, a

temperature T°, and a free electron density ne . Denoting the ioniza-

tion stage of element A of interest to us by X, we obtain N3

and
n:<x+o from the ionization equilibrium of element A calculated with
the model of House (1964) (see Section 4.2 of this Chapter). Using the
simplified notation of eq.(1.16) of Section 3.3 of this Chapter, these

can be written as follows:

noA(K) —- ne
N = ng ... (1.105)

The population density of ion X is equivalent to the sum of the popula-

tion densities of its individual atomic levels p:

n° = n

4]
b o ... (1.106)
I

M

Under most conditions, the population densities of the excited states

are much smaller than that of the ground state:
ny > 2 ng, .o (1.107) -

The conditions under which this expression is valid can be obtained from
one of the validity conditions of the CR model, eq.(1.78), and are dis-

cussed in Section 4.1.h of this Chapter. If expression (1.147) holds,
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(-]

n° ~ n .. (1.108)

and the calculation of the ionization equilibrium then gives the lonic

density n{ and the ground state population density n;.

We then cool the plasma "instantaneously" under adiabatic expansion
conditions by a factor of five. This represents a situation in which
the cooling occurs in a time shorter than the electron-ion recombination
time. The feasibility of this situation has been discussed previously

in Section 5.2 of this Chapter. The plasma parameters, after cooling,

become

T = T/

Ne = he / Fe

n = n/$
nl = n?/i—s
na= Ny /%, ‘ ... (1.109)

The 0SS population densities of the excited states ny, p=2, 3, ...

are then obtained from the set of parameters (1.189) with the CR model

by solving egs.(1.61) and (1.62) for the population coefficients and by

using these in eq.(1.64).
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This solution holds when stationary drainage has been established in
the plasma and it represents the amplifying properties of the plasma.
We do not study the time evolution of the population densities of the
excited levels a) from the start of the cooling process to the establ-
ishment of stationary drainage, and b) from the decay of stationary
drainage due to the relaxation of the inversely populated excited levels
to the final weakly ionized plasma in which the population of the

excited states have returned to normal.

5.5. Analysis of the inversely populated transitions

Many transitions are found to be inversely populated in these calcu-
lations. However, only a few of these giving rise to prominent lines in
the visible spectrum are studied. We follow the analysis used by

Varshni and Lam (1976) on the )\4686 He II 4 -> 3 transition.

The strength of an inversely populated transition g -> p (p < q) can
be characterized by the fractional gain per unit distance, ®. At the
centre of a Doppler-broadened line, it is given by the following expres-

sion (Willett, 1974, p.23):

ol P2 |
u(-.-‘/‘;‘r" “’a’:“* e | =2 o (1.110)

where A\, is the centre wavelength of the transition, av is the linew-

idth, Wq is the statistical weight of level g, Aqq‘, is the Einstein
probability coefficient for spontaneous transition from level q to p,

and (Lengyel, 1966)

n n '
P=-1_._-c. Ce..(1.111)
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P is a measure of the population inversion and, for laser action to be
operative, P > . « 1is related to the intensity of a plane wave at )\o
by the equation

L

I=1I¢€ eee(1.112)

where L is the length over which gain occurs.

To be able to compare various transitions without specifying the

linewidth AV , we define a quantity «' given by
A' = AV | .e.(1.113)

where & is given by eq.(1.118). The inversion is displayed on e, Te
plots (Ne- Te diagrams) showing contours of equal &' (equi-«' cont-
ours). Fig.9.13 of Chapter IX 1is a typical he-T. diagram. Cn a
three-dimensional plot -with &' as the third axis perpendicular to both
the ne and the T, axes, the diagram would appear as a triangular
pyramidal-shaped mountain with a very steep slope on the high-n, side,
a steep slope on the low-"T. side, and a gradual slope on the low-ne,
high-Te side. Strong population inversic;n thus occurs only within a
narrow range of values of ne and Te , and each transition has its own

region of strong population inversion.



Chapter II

'HYDROGENIC IONS

1. INTRODUCTION

A hydrogenic ion is composed of a single electron orbiting a nucleus
of core charge Z (in units of the electronic charge e). This orbiting
electron is called the valence electron. The core charge is the total
integral electric charge acting on the valence electron and, for hydro-
genic ions, it is equivalent to the nuclear chargé EEM. Thus for B I,

neutral hydrogen, Z = l} for He II, singly-ionized helium, Z =2; ... .

The energy eigenstates of the valence electron with the same value of
the principal quantum number n but with different values of the azimu~
thal quantum number & are very nearly equal. In this work, we can con-
sider them to be equal without any loss of generality. The ground state
quantum number is thus-n = 1; the first excited state quantum number,
n=2; ... . 'The energy eigenstates of the hydrogenic ions are thus
degenerate with respect to the £ ~value splitting of state n and the

statistical weight of level n is then given by

Wy, = 2n?, e (2.1)

The energy eigenvalue of the valence electron in state n is given by

€, =-En eee(2.2)

- 47 -
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where En is greater than zero. For hydrogenic ions,
2 .
En = th%—i— cea(2.3)

where h is Planck's constant, c is the velocity of light, and R is the
Rydberg constant of the ion that is being considered. It 1is given by

(Herzberg, 1944, p.21)
R= R,/ (1 +2) | . (2.4)

vhere R, 1is the Rydberg constant of an infinitely massive nucleus, m
is the mass of the electron, and M is the mass of the ion. Each ion
‘then has its own Rydberg constant, but the difference between these for
hydrogenic ions is at most only in the fifth significant digit. We thus

use for all hydrogenic ions

21
E,,,-’Y-—;

i Rudbergs ... (2.5)

where the Rydberg energy unit is defined by

2
{ ‘Rgdberg = zea., = hC R,o, ... (2.6)

The energy level diagram of hydrogen (H I) is given in Fig.2.1.
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2. RATE COEFFICIENTS

The - stationary states of a hydrogenic ion can be descri-
bed exactly using the. ..methods = of quantum mechanics. However,
the- interaction of a hydrogenic ion and a particle can
only be treated approximately. The approximation is particularly good
for the interaction of a hydrogenic ion and a photon. Thus reasonably
accurate values of the spontaneous transition probabilities and the
radiative recombination rate coefficients can be obtained within the
physical conditions of interest to us. However, processes occurring by"
electron impact are very difficult to treat and the approximations used
have varying degrees of success depending on the particulars of the col-
lision. A consistent order of magnitude estimate of the electron impact
ionization, excitation, de-excitation, and three-body recombination rate
coefficients can be obtained from most approximations, but the actual
accuracy of a calculation depends on the particular process considered

and the particular approximation used.

A very 1large amount of work has been done on the calculation of
hydrogenic rate coefficients. A review of this work is not the aim of
our work and is not necessary since certain specific calculations are
preferred and used extensively in the literature. 1In the following sec-

tions, we consider those calculations which we use in this work.

3. SPONTANEOUS TRANSITION PROBABILITY

We consider the spontaneous transition of an electron in a hydrogenic

ion from an upper state n to a lower state n'. Within the electric
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dipole approximation, the Einstein probability coefficient for the tran-
sition can be evaluated exactly, and it is given by (Menzel and Pek-

eris, 1935):
gm2e? 2 W
Aﬂ"'h' = MC3 Dn"l N: fn‘—-’n 000(237)

where w, and w, are the statistical weights of levels n and n' respec-
tively, Unw 1is the frequency of the photon emitted as a result of the
transition and ¥w.,. is the absorption oscillator strength for the

n' -> n transition.

The absorption oscillator strength is given by (Menzel and Pek-

eris, 1935; Green et al., 1957):

ansan’-4

j’ = 22‘_ n4‘n’2 (n"‘“')
n'—»n 3 (n+vV)1“‘*”*3

x{[zF,(“n’,——nfl;l; _4nn’ )]

(n-nN*
-[1F|(—-n'+|)—n30; (:”':‘)1)] } .. (2.8)
where
F (a,bjcyx) = > (ax(b) xt .ee(2.9)

Y=o (C‘>l\ k!

is the hypergeometric function (Abramowitz and Stequn, 1955, p.555) and

(@), = la+k) / T(a), .. (2.10)



52

If a and b are negative integers, the sum (2.9) is terminated and the
hypergeometric function is then a polynomial. Let a=-i and b = -j
where i and j are positive integers and i1 ¢ j; let x 3 #; then eq.(2.9)
becomes

f k

o I L T
PG R )-x) - Zi = (-r)) (j-RI! [k1]*

.ee(2.11)

For large values of n' and n, eq.(2.11) is difficult to evaluate
since it is given by a sum of very large terms which alternate in sign
and which tend to cancel one another. The value of the sun is then
smaller than the magnitude of these very large terms, and significant
loss of accuracy can occur. Furthermore, since the two hypergecmetric
functions of eq.(2.8) are very similar, the difference of the square of
these functions becomes very small as n' ané n increases. An even
greater loss of accuracy can then occur. For large values of n', n, and

n-n', we thus use the asymptotic formula (Menzel and Pekeris, 1935):

_ 2°¢ ' ' 13 / |
fﬂ’_-pn - BWV‘_‘?_. wn' (n[z - nz) /-;l;_j‘“,"’_i/g ‘c.(2.12)

where g, the Gaunt factor for the n' -> n transition, is of order unity.
With g = 1, we obtain a value of

¥

using a better estimate of the Gaunt factor. In Appendix E, we derive

‘S‘,o_”‘ off by ~25% and a value of

off by ~3%. The accuracy of eq.(2.12) can be improved by

20-»7J0

an expression for the Gaunt factor which we use to evaluate the absorp-

tion oscillator strengths for moderately high values of n' and n, and
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any value of n-n'. Eq.(2.12) then gives an accuracy of 3S for n-n' =1

and at least 4S for n-n' 2 2.

Emission oscillator strengths, fn-vn" are also occasionally used.
They can be obtained from the absorption oscillator strengths from the
relation

Wy 5,00 = W f .. (2.13)

hewopn

4. COLLISIONAL IONIZATION RATE COEFFICIENT

The cross-section for ionization of an atom or ion by removal of an
atomic electron from state n by electron impact has been thoroughly
investigated by Drawin (1961, 1962, 1963, 1966). He has proposed a
semi-empirical expression which gives a good fit to the available exper—
imental data, and which is proportional to Un E/E for large values
of the free electron kinetic energy E as required by quantum mechanics
(Massey and Burhop, 1952, p.148).

'
The cross—-section is written as

H
S, (Un) = 4705 *n lsn/z-i__i o 1

n UL

An (/.2'515,, Un) e (2.14)

where .If==£7‘ is the 1ionization energy of the hydrogen atom in its
ground state, T,=E, is the ionization energy of the atom or ion in
state n, WU, =E/I, 1is the kinetic energy of the incident electron in

units of the threshold energy for ionization from state n,



Isa]? = 12,12 /0l | ... (2.15)

124l  is the mean dipole length on the z-axis for the discrete-continu~
ous transition, and «, and ?n are correction factors of order unity.
To obtain the correct threshold law, @n must be larger than @.8.
Drawin suggests that the correction factors be approximated by the fol-
lowing expressions:

¥, 1S.1* & 0.065 £ (2.16)

f ) n - . I" %“ L WY .

vhere £, is the number of equivalent electrons in state n and #.665 is

a mean value for low and medium principal quantum numbers;

Zess !

= eee{(2.17)
Fn | + 272 ( )

where Ze44 denote§ the effective charge of the nucleus acting on the
electrons in state n; for hydrogenic ions, Ze¢s = Z. The cross-section

is then written as

Un
L

H\R
6;.(“»\) = 2.6¢ 77&: (Il ) gn

I, —— An (/'2S/§nu"> .o (2.18)

which, for hydrogenic ions, becomes

4
Cn (Un) = 2.¢6 TTAS (-:2—-) “2(

L 1"(/'25-/8" Un), . (2.19)
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The rate coefficient is obtained by integrating the cross-section

over the free electron velocity distribution, f(v):
Sa(T) = §, Sulw) a flu) du, ver(2.20)

For a Maxwellian velocity distribution of the free electrons, we have

mar?

T z2kT
G eee(2.21)

3/2

-

Flo d/v‘=-—4—(———'" )
) VT | 2kT
In units of the threshold energy for ionization from state n,

Up = g mv*/ T oo (2.22)

no

ed.(2.20) then becomes

~En

T* = kT
ST = 2fF rpn | Gutw) 1€ Ty 2o

Substituting for Sn.(WUa) from eq.(2.19), eq.(2.23) can be written as

S (1) = :_‘52 G(F.,, 9,,) cm®s™! eee(2.24)
vhere
i T —~Onln
G(ﬁn, 0,) =S, &"’ An (125 B, Un) € dun | ... (2.25)

6, = I, /RT = is17,8902%/ T n* vee(2.26)
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and T is in Kelvin.

The evaluation of integral (2.25) is not elementary. We rewrite

eq.(2.25) by changing the variable U, to X= O, U,; then

Q(p.,6,) =~é—nj; (l'— %) on (%E".x) e dx. ...
Expanding the natural logarithm, we obtain

6,6 (f,0,) = An (2582) [ (1- &) 7= dy

“"j:( “—'*)/@ x €77 dx., .e.(2.28)

The first integral is easily evaluated:

©n

3")6—10'1 =€ " -6, E () . (2.29)

vhere E,(6,) is the exponential integral:

E, (6,) =[0 £ dx ... (2.30)

”n Xx ¢

This is a well known function for which mény analytical approximations
are available (Abramowitz and Stegun, 1965, p.228). Substituting

eqg.(2.29) in eq.(2.28), we get

0 G (o, 0)= An (Z8) [ €7 _ g £, 0,)]

+f;:,(nx e dx - 6n | ( ”enx e “dx, v (2.31)



57

These last two integrals are evaluated in Appendix C:

j;fnx e dx = Inb, €7 + E,(6) ce(2.32)
fe,. j:x e dx = Anb, E,(bs) + & (6n) vee(2.33)
where &€, (6n) = J: E;((l) dx, eeo(2.34)

Analytical approximations to function 6.(9n) are also derived in
Appendix C. Substituting for egs.(2.32) to (2.34) in eq.(2.31), we

obtain
~6n
00 G(fr,61) = ln Casp) [ €™ 6, E, (8]
+[El(en>'—6n 6'(9n)] ee.(2.35)

which can be evaluated by analytical approximations.

Since the exponential integral E, (8,) can be evaluated to an
‘accuracy of 145 with approximations given by Cody and Thacher (1968},
the accuracy of G(F“’G") depends on the accuracy of the approxima-
tions to  €,(B,) . As given in Appendix C, &,(by) can be evalu-
ated to an accuracy of 4-6S, depending on the value of ©,. This is
thus the minimum accuracy of G(?,,, 9,.) . For large wvalues of ©,,

where substantial cancellations may occur in the terms

[e® 6,E,0)] o  L[E ) -6n6 (6)],
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comparable accuracy can be obtained by evaluating the first term with
the asymptotic expansion of E, (x) (Abramowitz and Stegun, 1965,
p.231); then

—Bn 1! 2! 3)
- 6, E(@n)] x € (9,, T BE *+ 63 ”*'")' ees(2.36)

n

~6n

[e
Since the second term is of order

[0 -6.c@)]~ —[e -0, E )] ..
o ,

its effect on the accurécy of Cz(@">9n> , compared to the first term,
is minimal. It can be evaluated asymptotically with the help of

ed. (C.60) .

The accuracy of the analytical approximations to G(@MOQ is
thus better than 4S for all values of B,. The accuracy of the values
of the rate coefficienfs calculated from eq.(2.24) thus depends exclu-
sively on the validity of the Drawin expression for the collisional ion-
ization cross-section, eq.(2.14). By adjusting the correction factors
o, and F"' this expression can be made to agree closely with experi-
ment (Drawin, 1961, 1962). However, using ﬁhe average values (2.16) and
(2.17) for these factors restricts the accuracy of expression (2.18).
For hydrogenic ions, the accuracy should still be better than a factor

of 1.5 for all states n.
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5. COLLISIONAL EXCITATION RATE COEFFICIENT

The cross-section for excitation of an atomic electron from a lower
state n' to an upper state n by electron impact can be evaluated with a

semi-empirical expression proposed by Drawin (1963, 1966):

EX

Wn

On,_.n((,(n',,) = 477 /Z,,,nlz SCUn'n) ee.(2.38)

where E, 1is the excitation energy of the n' -> n transition,
Unn = E / Epn .o (2.39)

is the free electron kinetic energy in units of the threshold energy for
excitation of the n' -> n transition, |Z.,| 1s the dipole length on
the z-axis for the n' -> n transition, and 9((&“.“) is an appropriate
function giving the correct asymptotic behavior of the cross—-section.

The dipole length can be written in terms of ¢ the absorption

ntewn?

oscillator strength for the n' -> n transition:

2 2 E/
12l = ao Frrcon .en(2.40)
En'n

With eq.(2.49), eq.(2.38) then becomes

H R
£ ) Fri o g (Unn). eee(2.41)
n'n

Shisn (u"'n) =47 af (E

Drawin proposes that different functions s(un'n) be used for atoms

and ions:
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Gaton = Olwn uL"t'” An (/25/3,,,, Unn ) vee(2.42)

n’'n
Gin = 0-302, Jor /& Uy & 3.85

Mon=)_
u == An (1.25 Um), For Uy, >3.85 ... (2.43)

]

vhere ., and @nw\ are adjustable parameters. Equations (2.42) and
(2.43) reflect the fact that at threshold, the excitation cross-section
for atoms is zero, whereas for ions, it is finite. Drawin suggests that

the following values of the parameters «,, and ?wn be used for atoms:

Ky =1

n
/Bﬂ’h = 2' ' 0..(2.44)
The expression (2.43) given for ions implies that

dnlh =]

Pnlh = , 000(2.45)
for ions.

The rate coefficient is obtained by integrating the cross~section

over f£(v), the free electron velocity distribution:

Copiyp (T) = —4— Gy (27) v f(v) dv: ... (2.46)
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Using the Maxwellian velocity distribution, eq.(2.21), and units of the

threshold energy for excitation of the n' -> n transition,
- n
UWan = 3 ma™ / Epn, .o (2.47)

eq.(2.46) becomes

| N
Cown (T) = 2 (kn-’*/z/ Gy (Unn)

mTm

—-%’ﬂan'n
x Uwn € Ay . ... (2.48)

Substituting for (Wyp) from eq.(2.41) in eq.(2.48), we get

V\‘—?n

Coooon (T) = 22 f 0 G (Am, Batn, On) em’s™ L (2.49)

7-3/2

where
G(O(n'n) Fs,.,,)en,,,) = ST g(u‘n'n) Unn C oin e dUn'v, ...(2.50)
0., = Ewn__ JIs,890 2* n*-n? e (2.51)

kT T n*n’% >

and T is in Kelvin.

The integral (2.5¢) has different forms for atoms and ions:
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— Onn Un'n

”unn
Ga‘bm= ‘xn'n S, 'n) e dWUpn ees(2.52)

n'n

.85 — Ot u“v“
C'lion': O.SOZf un'n e " d U

n'n

o0
Unmn -}
3.388 un'n

- qu Un'p

+ ﬁlﬂ ("2'8 Pn’n un'n) e dun'n. ees (2.53)

One of these integrals can be very easily evaluated:

21y
f‘ - e-ou,\u-ndu"'n - 5:‘3”[<'*9n-n) e—e.\

-3, 8S en'ﬂ ]

~(1+3.856,,) € . ... (2.54)

The other two integrals involve the evaluation of 2 more general integ-

ral:

Dr (Bun, O, &) = j—u—“—'”-'—ln(ug(gmu“)

’en' Untn
*e uh'n. 000(2055)

The function (5(@> 0, ) obtained in the evaluation of the collisional

ionization rate coefficient is a special case of this general integral:
G(F")e"> = Dr(F'\)eh) ‘)o -..(2.56)

To evaluate the general integral (2.55), we thus follow the method which

was used to evaluate eq.(2.56): steps (2.25) to (2.35). We then obtain

the general solution
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en.n Dr ( F"'"’ Onin | a) = An ("2-50-(3"‘.,) [evaGnM 6. E (ae,\.,,)]
+[E.(a9n'n)"5,,:,, €, (aen-n)], .e.(2.57)

The functions QGate,, and G,-m are then given by

Gatom = Xwy Dr (ﬁwn, Onin, 1) ... (2.58)
. —~On'n ~3.85 Ba'n
Gtonz Qb_?;’;.[_(”,ewn)e -(1+a3s Bn'h)e ’ ]
n'n
+ Dv (1, Onin 3.85). .er (2.59)

The accuracy of the function Dr(@n-n, Gn'n) o.) is the same as that
of the function G (?n) en) . An estimate of this accuracy can be
obtained from the discussion of the accuracy of G‘(‘S,\) 6,‘) given in
Section 4 of this Chapter. The excitation rate coefficients should also
have an accuracy comparable to that of the ionization rate coefficients:
better than a factor of two for hydrogenic ions (see Section 4 of this

Chapter) .

6. INVERSE PROCESSES AND DETAILED BALANCING

The collisional de-excitation and three-body recombination processes
are the inverse of the collisional excitation and collisional ionization
processes respectively. The rate coefficients of each pair of processes

are related by the principle of detailed balancing. This principle
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states that under conditions of thermodynamic equilibrium, the
differential reaction rates for each microscopic process and for the
corresponding inverse process are equal (Mitchner and Xruger, 1973,
p.8%). If the free electron distribution function is Maxwellian, the
rate coefficients are also related by the requirements of detailed

balancing (Mitchner and Kruger, 1973, p.435).

As an example of the method, we consider reactions of the type (Sea-

ton, 1958b)

AcI+B ~ A, + B .e . (2.60)

where Aq and AP represent particle A in states q and p respectively,
and B represents particle B. We denote the particle densities by
“(Aq) , h(AP) , and n(B) , and the rate coefficients in the
forward direction by R‘i"i’ and in the reverse direction by RP"‘\ .
Under thermodynamic equilibrium, these rate coefficients are related by

the detailed balance reilation
n(Aq) n(B) Ra=p = n(A;) n(B) Rpmq.  coc2e6l)

Combining eq.(2.61) and the Boltzmann relation

Y\(Ak) w? 5 ee.(2.62)
we obtain the relation
(Ep- Eq)/ kT

= Y

- eee{2.63)
: F
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between the rate coefficients.

7. THREE-BODY RECOMBINATION RATE COEFFICIENT

The rate coefficient for the recombination of a free electron in an
atomic state n with subsequent absorption of the excess energy by a
neighbouring electron, o, (T) ’ is obtained by the principle of
detailed balancing from the rate coefficient for the inverse process of
ionization by electron impact, 3, (T) . The rate coefficients are

related by the expression (Drawin, 1963)

. Wa h3 6n T
Ka(TY = ZUL Grm AT €7 S.(T) ... (2.64)

where U; is the partition function of the ion before recombination, w,
is the statistical weight of the recombined electron in state n, and

O, = I./RkRT. Recalling the Saha equation (1.17), we can write
Kn (TY = 2, (T) Su (T, .e.(2.65)

NMumerically, for T in Kelvin and Sn (T) in cm®s™', we obtain

o7 x 107" wa

_2
dﬁ (T) - TB/Z u{

e® S, (T) em®s™, ... (2.66)

. . 6
As 9.\ increases, the exponential term & becomes very large, and
the ionization rate coefficient, Sn (TB , very small. The product of

the two terms remains finite, but on a computer, it gives rise to com-
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plications (overflows and underflows) which can be resolved by
multiplying the two terms algebraically. Substituting for Snw (T)

from eq.(2.24) in eq.(2.66), we get

A (T) = 7'531_“3'0-" Z)f' G'(B,,6.) em‘s™ .ee(2.67)
/ On
where G (P”>9") = @ G(‘S,,)G.,),. .e.(2.68)

Substituting for G( ‘SMG,\) from eq.(2.35), we obtain

9.‘ Gl (F,‘) 6,,) = /&\ (/“25/3'1) [ /- Qn E,',Cen)]

+L e (6.) - 6, € 6,)] ... (2.69)
where E(6,) = e"" E,(6,) .ee (2.70)
amd € (0,)= €7 €,0,). cea(2.71)

For large values of 6,, the functions E\' (9,.) and é,l(en) can be
evaluated accurately from their asymptotic expansions. For E_,l(en) ’

we have (Abramowitz and Stegun, 1965, p.231)

10 o[- a2l
E, (6.) »[l ot L ] e (2.72)

‘The function é,’(GQ for large 6, can be evaluated from the approxi-

mations (C.58) and (C.60) given in Appendix C.
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8. COLLISIONAL DE-EXCITATION RATE COEFFICIENT

The rate coefficient for de-excitation of an atomic electron from an
upper state n to a lower state n' by electron impact, Fn’n,('r) , is
obtained by the principle of detailed balancing from the rate coeffi-
cient for the inverse process of excitation by electron impact,

C..--»'. (m) . The rate coefficients are related by the expression

(Drawin, 1963)

en'n

F-,,_,",O(T = '&)‘2' e
W

n

Coron (T). ee (2.73)

For large values of O,,, the product e Cutmn(T)is evaluated
algebraically as has been done for the three-body recombination rate

coefficient. Using egs.(2.13) and (2.49), eq.(2.73) becomes

5.45 ! -
Fn-bn' (T) = -—7:_—3—/2 n—snt G (0(,,:” , P,,ln) 9,,'”) C’m3S.'..(2.74)

' én'
where G (qn'n) IS”'"’ eh'n) = 6 ! G(dnln) Pnl") en'n ). eee(2.75)

!
From egs.(2.58) and (2.59), the function G («n'n,@n.n,e,,.n) has dif-

ferent forms for atoms and ions:
¥ /
Ga+¢m = o(n'n. -Dr (fan'n, Gn'", ,) o.-(2.76)

' . —2.85 6
G',a.,=—9§—°,;2—[/+e,,,,,——(/+3.35'9.,,.)6 ]

A'n

+Dr'(1, Ein 3.85’) . (2.77)
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en'n
where Dr’ (/é’n'n, O, @) = € D"(,@nm,é’n«n, a). ...
From eq.(2.57),
| ~(a-1)6nn
1 —
Bun D' (B, G, 4) = L (/..zsa/g,,,,,)[e
€0n'n _ ] [ 6nn 6nn
- 00'1! t’/ (a' 0"'”) t 6 E[ (d 9,1';1) —-9,,/” e é‘ (ﬂ g)p’n)]. see (2.79)
eenm E ( 6 ) eﬂ'ﬂ

For large values of O, 1 \QOn'n and e é_,(aeh.n>
are finite, and can be evaluated accurately from their asymptctic expan-

On'
sion. e E, (0.9,.\") is given by (Abramowitz and Stegun, 1965,

p.231)

Onm - (a1)Bn / ]
€ E (aby,) 2L € [1--4 . 2 -J...(rz.sm

] o e
a Qn’n a'g"'-‘? (Q_ on'n)z

9 1
€"" €, (Qe“|") for large Qh.“ can be evaluated from egs.(C.58) and
(C.68) given in Appendi‘x c. From egs.(2.79) and (2.80), we note that

for large O, , €9.(2.77) becomes

' [+ On
G = 0.302 L£8n

. eee(2.81)
en’n

9. RADIATIVE RECOMBINATION RATE COEFFICIENT

The rate coefficient for the recombination of a free electron 1in a

hydrogenic atomic state n with subsequent emission of a photon of fre-
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quency U is calculated from an approximation proposed by Seaton (1959).
The rate coefficient is obtained from the photoionization cross-section

by the principle of detailed balancing:

J 2 2”2 In/kT
P,.(T) =L \@ o s
.k |
S )2 €% a,(0) d(hv) .o (2.82)

where cx“(u) is the cross-section for photoionization of a hydrogenic
ion in state n and all other symbols are as defined previously. The

cross-section is given by

2
an(u)z__z"uwao_g_ gz (1, &)

3VF 22 (I+n%¢)? ...(2.83)

where ® is the fine-structure constant, Z*¢  is the kinetic energy of
the ejected electron in Rydbergs, and Sn;(n’éf) is the Kramers-Gaunt

factor; it is of order unity. From the energy conservation condition

ho = Z"(-—'—- -r—é) Rydbergs ...(2.84)

nt

and the relation

2
6, = Ln . (57.9%0 2 ...(2.85)

kT - nz ?

and substituting for a,(p) from eq.(2.83), eq.(2.82) becomes

ﬁn (1) = %:M%—f x%eal 2 9:/2,& (6,) vee(2.86)
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oo ( —8@nln
where Ay (6x) = | -%’%;—’E—)-— e du, vee(2.87)

and U, = nN*e = 2Z2*€/ T, ... (2.88)

is the kinetic energy of the ejected electron in units of the threshold

energy for photoionization from state n. Numerically,

'8,, (1) = S.197x 107" 2 6, 3/2/4’« (0n) em®s!, et (2.89)

Putting the Kramers-Gaunt factor equal to unity in eq.(2.87) gives

rise to errors as large as 20%. The accuracy of @.« (T) is improved
by using the asymptotic expansion of Sn(”,é) (Menzel and Pek-
eris, 1935; Burgess, 1958):

gﬂ(n,6)= | + Q17238 wu -t

/’)2'/3 (u+/)2/3
0.049¢ U+ Iuri
n4/3 (U+1)*7> . ... (2.90)

Substituting eq.(2.99) in eq.(2.87), we get

A, 08) = L2(6,) + 01728 4.7(6n)

(2)
. 9
—-—‘-’—%“—i—,—f—- (0,) +++- eer(2.91)
o) had / ~6rln
were 4, (6.) = f° s € d‘a,, , .ee(2.92)
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) _ Un—1 —O0nlUn
/An (Qn) = f ma e du, 5 ees (2.93)
) = un® s Un Tt ~ Onén
and /fn (6,) = f dn + 2 e~ di, oo (2.94)

° (Up+1) "3

These integrals can be expressed in terms of well-known functions:

(o) "
A (6a) = e’ E, (6,) vee(2.95)

/Cfn“)(en> = =3+ (1+36n) (.E(I)‘ 4/3 5 9,,) e (2.96)

,4,:2)(9,,)= “2(r40a) + (1426, + 2 6.2) G5 5/356,) ... 2.07)

where [E,(x) 1is the exponential integral, and ‘-}(a;cs,x) is the

confluent hypergeometric function (Abramowitz and Stegun, 1965, p.503).

CL( 13cyx) is evaluated from the relation
- x
(c-NECi5ejx) =)' €7 = (505 x) ...(2.98)

where the series

DY) = X x* '
$lieyx)= | + = * ian T .o e (2.99)

converges for all finite x. In the limit of large x, the asymptotic

expansion

. YR | _ 2~ (2-¢)(3-¢) .
E(rye;x) = T[I — =3 —--] ... (2.100)
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is used. Eq.(2.98) 1is accurate for small values of x, and eq.(2.100)
for large values of x. For intermediate values of x, both of these
equations loose their accuracy: eq.(2.98) because the two terms of the
right hand side become very nearly equal as x increases, and eq.(2.100)
because the asymptotic expansion becomes less and less accurate as x
decreases. For these values of x, we evaluate q:(l',cj x) from its
integral representation (Abramowitz and Stegun, 1965, p.505) |

oo Cc—2 - .
Qliseyx) = X"‘jo (z+x) e % az, .e.(2.101)

The integral 1is evaluated numerically with Simpson's 1/3 rule. The
integration to z = co is truncated at z = 30, and the mesh is fixed at

1/15 (458 subdivisions of the range z = § to 30).

The different expressions used to evaluate q»(\')c;x) are applied
within the following ranges of x: eq.(2.98) for x £ 6, eq.(2.101) for
6 < x < 15, and eq.(2.1.@0) for x > 15. These were obtained by evaluat-
ing <}(|-, 4/3 x) to an accuracy of 6S. In this way, the accuracy
of LI(|3<:3 x) does not affect the accuracy of (5" (T) . The accu-
racy of the rate coefficients depends on the value of Qg (n, €) used
in eq.(2.87). With the asymptotic expansion (2.98) of SI(HJG) ’
these are not in error by more than 2% for temperatures of order
10,000 K or less, but the error may be greater for temperatures of order

1,000,000 K. However, since the error in

Broc (T) = Z o (T)
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is estimated by Seaton to be of about 10% for (T/Z*) = 1,000,090 K, the
error in P,, (T) should not be greater than 10% for this value of

(1/2%).



Chapter III

THE LITHIUM-LIKE IONS C IV, NV, AND @ VI

1. INTRODUCTION

The Wolf-Rayet stars are known to show strong emission lines of C IV
and also of isoelectronic N V and O VI in their spectra. Varshni (1977)
has discussed the possibility of laser action in the 1line C IV \4658.
It was thus of interest to carry out detailed calculations concerning
possible laser action in the emission lines of the 1lithium-like ions

C1Iv, NV, and O VI.

A lithium-like ion consists of three electrons orbiting a nucleus of
nuclear charge Z, (in units of the electronic charge +e). Two of the
electrons occupy the closed 1s® shell while the third electron (the
valence electron) orbits the helium-like core composed of thié closed
1s* shell and of the nucleus. The core thus has a charge Z = Z,- 2.
More details are given on the first six lithium-like ions in Tab.3.1l.
The core-valence electron system is very similar in structure to a
hydrogenic ion. The differences that arise between the two kinds of
ions stem from the difference in size of the cores: for lithium-like
ions, the core has a finite size while for hydrogenic ions, it can be

considered as point-like.

- 74 -



Tabte 3.1 - The first six lithium-like ions.

Notation | Charge Description
Li I Li0 neutral
+ . ..
Be II Be singly-ionized
2+ ..
B III B doubly-ionized
3+ . .
C IV C triply-ionized
4+ . .
NV N ionized four times
5+ .. . .
0 VI 0 ionized five times

75
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2. ENERGY EIGENVALUES

The finite size of the core causes a splitting of the energy levels
of the lithium-like ions with respect to the orbital angular momentum
quantum number L . This is illustrated in Fig.3.1 (Her zberg, 1944,
p.6l). The reason for this situation is best visualized with the Bohr
model of the atom. Classically, a low angulaf momentum electron passes
closer to the core than a high angular momentum electron. Close to the
core, the electron experiences an effective potential which is different
from the Coulomb potential effective at large distances from the core.
Consequently, for a given principal quantum number n, states with dif-
ferent values of the azimuthal quantum number £ will have different

energy eigenvalues, especially at low values of n and A.

In this work, we thus consider the splitﬁing of the energy levels
with respect to the quantum number £, but neglect the splitting with
respect to the magnetic quantum number. Then the 2s state is the ground
state of the valence electron; the 2p state, the first excited state;
the 3s state, the second excited state; and so on, in order of increas-

ing level energy. The statistical weight of level nf is given by
Wo = 2024 +1), cee(3.1)

We use the experimentally observed and extrapolated term values of the

energy levels compiled by Moore (1949), wherever available.
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EFFECTIVE GUANTUM NUMBER,N"

FROM THE DATA OF MOORE (1349).
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3. EFFECTIVE QUANTUM NUMBERS

Since lithium-like ions are similar in structure to hydrogenic ions,

their energy eigenvalues can be expressed as follows:

Ep = Ac?-—%; vee(3.2)
N,

where R is the Rydberg constant of the ion of interest and n: is the
effective quantum number of state nAL. The Rydberg constant is calcu-
lated with eq.(2.4), using the mass of the most abundant isotope of the
ion because the observed spectrum will be that of the mcst abundant iso-
tope. We thus use the following isotopes in our calculations: %C 1V,
“N Vv, and %0 VI (abundances: 98.9%, 99.6%, and 99.8% respectively).

Using (Taylor et al., 1969)

Ro = 109,737.3/2 £ 0.011 cm™, e (3.3)
we obtain the following Rydberg constants:

Reg = 109,732. 295 £ 0.011 cm™;

Ruyy = 109,733,012 £ 0.011 cm™;

Rog = 109,733,548 0,011 cm™, ... (3.4)
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From the Rydberg constants and the values of E, given by
Moore (1949), the effective quantum numbers can be calculated from
ed.(3.2). The values fqr the known levels of C IV, NV, and O VI are
given in Tables 3.2, 3.3, and 3.4. In general, the effective quantum
numbers are non-integral and lower than the corresponding hydrogenic
values. The difference between the hydrogenic integral value and the
effective non-integral value of the quantum number is called the quantum

defect /,;,,d :

ng = n - M, <.« (3.5)
For the ions C IV, N V, and O VI, we have the approximate values
/a..s ~ 0.0 -0.15
/a,,[, ~ 0.03 - 0.04
/und ~ 0.002 — 0.003

//a,,fl < 0.0005, . (3.6)

As can be seen from Tables (3.2), (3.3), and (3.4), Fig.(3.1), and
eq.(3.6), the quantum defects are larger at low values of L, n, or Z.
As L increases, Mg tends to zero; as n increases, /u,,g tends to a

constant value; as Z increases, /Lng_ tends to zero since the core then

becomes point-like.
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Table 3.2 - Known effective quantum numbers of the levels of the ion C IV.

Orbital angular momentum quantum number, 2

S p d f g h
1.8371783 | 1.9630202 - - - -
2.8422841 | 2.9620656 | 2.9983746 - - -
3.843812 3.961775 3.998013 3.999776 - -
4.844427 4.961?3 4.99777 4.99961 4,99997 -
5.84375 5.96072 5.99757 5.99970 5.99997 | 6.00000
6.84073 6.95973 6.99631 6.99970 6.99998 | 7.00G0C1

7.96067 7.99975 8.00004 | 8.00004
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Table 3.3 - Known effective quantum numbers of the levels of the ion N V.

Orbital angular momentum quantum number, ¢

S p d f g h
.8640328 | 1.9671952 - - - -
.868511 2.9666473 | 2.998514 - - -
.869731 3.966310 3.998018 - -
.870395 4.966108 4.998295 -
.87112 5.96622 5.99841 5.99990 6.00018 6.00022
.87143 6.96564 6.99808 7100002 7.00033 { 7.00033
.87172 7.96685 7.99819 8.00015 8.00052 | 8.00052
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Table 3.4 - Known effective quantum numbers of the levels of the ion 0 VI.

Orbital angular momentum quantum number, &
n S p d f g h
2 | 1.8831220 | 1.9706202 - - - -
3 | 2.8870231 | 2.9702136 | 2.9986036 - - -
4 | 3.888198 3.9701819 | 3.9983314 | 3.9998726 - -
5 | 4.888460 4.970159 4.997989 -
6 | 5.88873 5.96918 5.99760 5.99997 6.00024 6.00027
7 | 6.88983 6.96771 6.99762 7.900]3 7.00044 | 7.00044
8 |7.89011 7.96457 8.0014 8.00036 8.00069 | 8.00069
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The non-integral values of the effective quantum numbers are due to
departures of the effective potential acting on the valence electron
from a Coulomb potential. The finite size of the core also accounts for
the smaller-than-hydrogenic values of the effective quantum numbers. As
the valence electron approaches or penetrates the core, it is acted upon
by an effective core charge which is larger than Z. Since we elect to
keep Z constant, the larger effective core charge becomes, in the con-
text of eq.(3.2), an effective quantum number which is smaller than the

actual integral value of the quantum number of the state considered.

It is also possible to explain the variation of }inx with £, n, or 2
by using similar arguments. Valence electrons with low values of £
(L =0, 1) actually penetrate the core. These states thus have large
quantum defects. However, as & increases, the electron does not pene-
trate the core since, in the classical model of Bohr, 1its orbit becomes
more circular. (In quantum mechanics, the probability of finding the
electron within or close to the core becomes very small.) Thus }Lg
approaches zero. Similarly, as n increases, the electron's distance
from the core increases and /ung consequently becomes smaller. However,
since the extent of the penetration of the electron within the core
depends on L, penetration can still occur and Pt does not approach
zero. As Z increases, the core becomes smaller and Hont decreases. For
Z -> o, the core becomes point-like and }L"l approaches zero. It
should also be noted that even though Pent tends to a constant value as
n increases, /Lu/n tends to zero and the states thus become more hydrec-

genic as n increases.
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4. ENERGY LEVEL SCHEME

In view of these considerations, the simplified energy level scheme
depicted in Fig.3.2 is used in this work. For n £ 6, levels with dif-
ferent L values are considered separately. For higher values of n, the
data on the required cross-sections are very scarce and the splitting of
the energy levels with respect to the L values becomes very small.
Consequently, the following simplified scheme is adopted. For n=7, 8,
and 9, s states are kept separate, but other A-value states are lumped
together into hydrogenic states which we denote by ndL2i) . For
n 2 10, the JA-value splitting is neglected altogether and all angular

momentum states are combined into hydrogenic levels.

The labelling of the various states, as used in this work, is indi-
cated on the right hand side of the levels in Fig.3.2. The effective
quantum numbers are given in Tab.3.5. The hydrogenic states obtained by
combining the different A -value states have been assigned integral
quantun numbers. The superscripted values of n; have been obtained
from various methods of interpolation or extrapolation; a detailed des-
cription of these is given in Section 9 of this Chapter. 211 other
effective quantum numbers have been obtained from the tables of term

values given by Moore (1949).
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Table 3.5 - Effective quantum numbers of the
jons C IV, N V, and O VI used in this work.

State C IV NV 0 Vi
2s 1.837178 | 1.864033 | 1.883122
2p 1.963020 | 1.967195 | 1.970620
3s 2.842284 | 2.868511 | 2.887023
3p 2.962066 | 2.966647 | 2.970214
3d 2.998375 | 2.998514 | 2.998604
4s 3.843812 | 3.869731 | 3.888198
4p 3.961775 | 3.966310 | 3.970182
4d 3.998013 | 3.998018 | 3.998331
a¢ | 3.999776 | 3.99980° | 3.999873
55 4.844427 | 4.87039 | 4.88846
5p 4.96163 | 4.96611 | 4.97016
5d 4.99777 | 4.99829 | 4.99799
5f | 4.99961 | 4.99982° | 4.99990”
59 4.99997 | 5.00020° | 5.00028°
6s 5.84375 | 5.87112 | 5.88873
6p 5.96072 | 5.96622 | 5.96918
6d 5.99757 | 5.99841 | 5.99760
6f 5.99970 | 5.99990 | 5.99997
6g 5.99997 | 6.00018% | 6.00024°
6h 6.00000 | 6.00022° | 6.00027¢
7s 6.84073 | 6.87143 | 6.88983

731> 7 7 7
8s 7.8438% | 7.87172 | 7.89011

8<8 31> 8 8 8
9s 8.8437% | 8.8718% | 8.8900°

9<2,%1> 9 9 9
10 10 10 10
11 11 11 1]

12 12 12 12
13 13 13 13
14 14 14 14
15 15 15 15

a, b, c: as explained in the text
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5. THE CR MODEL

The CR model must be modified to account for the difference in struc-
ture of lithium-like and hydrogenic ions. To simplify the application
of the theory developed in Chapter I, the same system of state labelling
is used: the ground state (2s) is labelled 1, the first excited state
(2p) is labelled 2, the second excited state (3s) is labelled 3, and so
on in order of increasing level energy as indicated in Fig.3.2. The
derivation of the equations of the CR plasma model for lithium-like ions

then parallels that given in Chapter I for hydrogenic ions.

The time evolution of the population density of level p in‘an opti-
cally thin plasma is given by eq.(1.59):

do . &

ALE Foy #5  E ol - E Apen I

‘ff,{C;_,? He + .-_a ,47_,/9]{07 +--—{o(,,n€ +8, ]

{Cp+7he *4'A74P} «es(3.7)

7""#/

where p and g are state labels; p =1, 2, 3; eeey r; r is some high-ly-
ing state above which the levels are in LTE; s is the last bound state
of the ion (s > r); ne is the free electron density; ?P is the popula-
tion density of level p normalized with thé Saha equilibrium wvalue of
the population density; Cﬁ**? is the electron impact excitation rate

coefficient for the g ~> p transition; F}Pﬁq is the electron impact
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de-excitation rate coefficient for the p -> g transition; AF“’& is the
Einstein probability coefficient for the spontaneous radiative transi-
tion p -> q; SP is the electron impact ionization rate coefficient for
level p; X, is the three-body recombination rate coefficient for level
P; PP is the radiative recombination rate coefficient for level p; and
Z_ is proportional to the Saha equilibrium population density of level

P
p and is given by eq.(1.17).

The steady state (SS) solution to the set of coupled first order dif-

ferential equations (3.7) is obtained as in Chaptér I, from
.ss(t_) = O . - r
FP ) P“ ') 2-)...) 000(3.8)

vhere the dot over PP denotes differentiation with respect to time.
However, the quasi-steady state (QSS) solution must be modified to
account for the small energy separation of the ground and the first
excited states as compared to that of the first and the second excited
states. As can be seen in Fig.3.1, this is particularly significant for
ions with large values of Z such as C IV, NV, and O VI. As a result of
this, the population density of the first excited state (level 2) is
very much larger than that of the other excited states, and it may even
be comparable to that of the ground state. Then one of the validity

conditions of the CR model, condition (1.74), is not valid.

The 0SS solution is modified by using a method similar to the one
developed by Bates et al. (1562b) to describe hydrogenic plasmas opti-

cally thick toward the lines of the Lyman series. The normalized popu-
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lation density of level p is expressed as a function of the ground and

the first excited state population densities:

(o) 2)

pr=ri r;,"lo, Y pa .. (3.9)

where 3 ¢ p& r and r;”, ré“ , and r;” are the population coeffi-

cients of level p. The OSS solution is obtained when the population
densities of the second and higher excited states are 1in equilibrium

with the population densities of the ground and the first excited states

which, in general, are not in equilibrium. We then have

/D',(t) +0
,52 (t) #+0
f.?ps (t) = o, o .er(3.10)

Substituting the solution (3.9) in the system of equations (3.7), and

using the last of eq.(3.10), we obtain a set of equations of the form
a, + b, Prot Lpfa=0 5 p=34.., 0" ... (3.11)

For arbitrary values of f' and fz . the general solution of eq.(3.11)

is

a./,:-o



o0

eee(3.12)

We must also impose the limiting conditions corresponding to the values

of p=1, 2 and p > r on the population coefficients rl(;) ' r;') , and
) .,
Y‘? :
Pfo) =
ri =
r®=o0; .e.(3.13)
r =o
r =0
ry? =1 e (3.18)
(o)
I"P" =/
(4]
I‘P” =0
2)
rP)r = O - se e (3.15)
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Eq.(3.15) has already been applied to derive the system of equations
(3.7). Using egs.(3.12), (3.13), and (3.14), we obtain three sets of
r-2 equations which are solved for the population coefficients r '

iU‘L ) ,,“”4-2@ ry :-—-é-;{o(,,hev"l@,b]

7*3 7 = pti
S 2 .
"?2;”' f C,,_,7 he + -—Z;Z- A ?,.,;,} 5 ...(3.16)
=! ) . Ci) - C’)
g=3 VQ/’? 6/’ r/’ + ??;—;ﬂ @/b? /"7
= = F 4. Ne; ver (3.17)

== Fpaa N ... (3.18)
where

L/‘&M = Fpg Nle s ... (3.19)

72 /’“’7 9= pt
P—l
+ 74::' 4/»—’7 ; .o (3.20)

@P7 = C}D_,? Ne -+ =% A?_)/, )‘ P=3,4)... r. ...(3.21)
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From the population coefficients r‘:") ’ r;" , and \"‘S“) , the popula-

tion densities n, can be calculated for any value of wn, and n, from

— (o) P )

Z
+ —”'zz n, rp? 5 h=3, 4 r .. (3.22)

where n; is the ionic density. The time evolution of the population
densities of the ground state and the first excited state, " and n,
respectively, can be obtained by substituting eq.(3.9) and the popula-

¢
(o)' Y D

tion coefficients v , and r% into eq.(3.7) with p =1 and
|4 P

P
p = 2. We then get the two coupled first order differential equations

R CcRrR CR
No= =S, nen, + My hnen, + X, ne 5

R . cR cR
Ny = =Sz Neny, + Mz ne 1, + o He N: .. (3.23)

where

1—77
1 - - )
n( Z’ 7Z=3 [ F;}—-PI nC +/47—‘?[ ]'é? 7 > .o-(3.24)
R S
52 = Sz + F:.l-’l + 71%‘ Az—pz + Z.- C-?“’?

[F‘,?_,z Ne +,47_,2]z7 rg 5 -e-(3.25)
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CcR
dl = O/I ne. + (31

A

S . (o)
+ 72_—;3 [F7-—>/ he + A?—n] 27 )"7 ) .ee(3.26)

CR

A}
+ 72:3 [ F7__>2 ne -4~ /4'7-9,3] 4%7 r‘?("); ees (3.27)

cR

!
A4ll = Fjl-bl + -7E— /43"’

! S

(%)_ .
Ne &2 ‘}Z--:s [/:7"’ Nle +’4‘7"’] 2:‘7 V‘? > eee(3.28)

+

Mz = Cisg

S @)
el Ne + ee o (3.29)
wz I [Py e Agsa]Zy 7y cu29)

<R
The coefficients S, , S2° and TN

. are similar to the hydrogenic

collisional-radiative ionization rate coefficient S (eq.l1.67) and
recombination rate coefficient Keg (€9.1.68) respectively. The coeffi-
] (2 <R . s s
cients M, and M|, have no hydrogenic counterparts. The collisional-
. <R . . .
radiative rate coefficient M, expresses the recombination which occurs

in the ground state due to the neighbouring first excited state and vice

cR

versa for the collisional-radiative rate coefficient M,;.

The general solution of the coupled system of equations (3.23) can be

written as
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s (+) -)
n(t) = n> +n; € -ni € cee(3.30)

where j = 1 or 2,

2

(1)
R A

[ 4
+ \/(Sf‘—Sj‘a)’”—;— 4M,; My , (3.31)
ss
s3 HJ
n; = <6~ e (3.32
J >\(+)>\(> > ( )
(z) 2 (r)  ss
p® - Ni(t=o) A = Kid "+ K , .. (3.33)
J >\(-"- (x(*‘)— )\(-—)) ~
R £ -
K= nd g [ o0 S5+ x5 My , .. (3.34)
ss 2 CR cR CR Ck
Ky = Ne ng [o(z S+ o, M, , eee (3.35)
. e
K= he] «fn; + 57" n (t=0)
cR
+ My, nz(t=°>]) .o (3.36)
cR cRr .
K, = e[ o, n, + S, hy (t=0)
R
+ M,, n.(t=0}]. ... (3.37)

The steady state population densities, which are obtained in the limit

as t -> o0, are explicitly given by
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R _CR c cR
nSS - d,c a -+ O(Z.R M.‘LI n. (3 38)
| — (R Cz CR CR ¢ ce e -
CR _, cR CR 4€R
ny = S, 2+ X M p. ... (3.39)

cR CR cR CR
S’ 51 - M:z MZ.I

The validity of the (0SS sclution is discussed extensively in Section
4.1.h of Chapter I. The conditions derived therein need little modifi-
cation for lithium-like ions. They will hold provided all terms involv-
ing state 1 are replaced by tems involving states 1 and 2; in addition,
any discussion of the excited states should not include the first

excited state.

6. ADIABATIC COOLING OF THE PLASMA

The adiabatic expansion and subseguent cooling of a 1lithium-like
plasma is described by egs.(1.99) to (1.184) ~as derived for hydrogenic
ions in Section 5.3 of Chapter I. Due to the similarity of lithium-like
and hydrogenic ions, the value of ¥ (the ratio of the specific heats at

constant pressure and volume, ed.l.10@) is taken to be
¥=5/3 .o o (3.40)

although, as noted earlier in Section 5.3 of Chapter I, the actual value
for a plasma is lower than 5/3. The following parameters are also
assigned the same value as in Chapter I: the cooling factor i; = 5;
then the expansion factor ft = 11.2; the initial density of element A

(C, N, or 0) before expansion is
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Ng =10 ecm-, ... (3.41)

7. MODEL CALCULATIONS

The model calculations describing the adiabatic cooling of a lithium-
like plasma must be modified to account for the relatively large popula-
tion density of the first excited state. Since the population densities
of the excited states Ng: P=3, 4, ..., r depend on the population
densities of the ground and the first excited states, both n, and n.
must be specified to calculate these. Using -the model of House (1964)
as done previously for hydrogenic ions in Section 5.4 of Chapter I only
yields the sum of n, and wn,, not their individual values. To correct
for this situation, the model calculations must be carried out as fol-

lows.

We assume that the plasma 1is monatomic, unmagnetized, stationary
(except for the expansion), and spatially homogeneous. Initially, it is
characterized by a density na given by eq.(3.41), a free electron den-
sity ne, and a temperature Te. We calculate the ionization equili-
brium of the plasma with the model of House (1954) and hence obtain ﬂ?.
Assuming that the plasma parameters have .been constant for a suffi-
ciently long time, steady state conditions will prevail and the popula-
tion densities of the 1levels p will be given by the steady state solu-

tion of the system of equations (3.7) obtained from eq.(3.8):

ng = ng “ne Te") .ee(3.42)
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At t = @, the plasma is "instantaneously" cooled under adiabatic
expansion conditions by a factor % = 5. The validity of this assump-
tion is discussed 1in Section 5.4 of Chapter I. Immediately after the

cooling, the plasma parameters are given by

ng = ng / fc

ng = ny/ fe. vee(3.43)

The plasma then evolves toward the quasi-steady state described by the
CR model. This transient state of the plasma is not studied in this
work due to its complexity. Once 0SS conditions have been established
in the plasma, the plasma parameters ne, Te, N, and ny are obtained
as follows: It is assumed that e, Te, NI, n¢, and n{ do not
change significantly during the transient stage of the plasma. The val-
idity of this assumption is discussed in Section 4.1.h of Chapter I.

Then

Y
i
ol

>
0
B

=
N
1
>
N

. ... (3.44)
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From these parameters, the population densities of the excited states
Np,P= 3, 4, ..., r can be obtained from the 0SS solution of the CR
model given by egs.(3.7) and (3.10) as outlined in Section 5 of this
Chapter. The analysis of the inversely populated transitions follows

that given in Section 5.5 of Chapter I.

8. THE RATE COEFFICIENTS

8.1. Available data

The rate coefficients wused in eq.(3.7) are evaluated from the data
available in the literature. However, experimental data are scarce and
we must thus rely almost exclusively on theoretical calculations. Quan-
tum mechanical calculations have been carried out on most cross—sections
involving the lower states 2s, 2p, 3s, 3p, and 3d, and they should thus
provide reliable estimates of the rate coefficients. However, since the
degree of sophistication of the quantum mechanical effects included in
the calculations varies substantially, the accuracy of the rate coeffi-
cients is not uniform. For higher states (n % 4), very little work has
been done and the amount of data that is available depends on the parti-
cular physical process considered. The availability of experimental and
theoretical data is discussed more extensively for each individual pro-

cess in the following Chapters.
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8.2. General calculations

A very large number of rate coefficients are required in this work
and most of them involve states with n » 4. Due to the lack of availa-
ble data on these states, it is‘necessary to use data obtained from less
reliable methods of calculation or from relatively simple general formu-
las when available. However, only those formulas which yield reasonable

estimates of the rate coefficients are used in this work.

Radiative processes are easier to deal with than collisional pro-
cesses., Consequently, general formulas are available for the calcula-
tion of optical cross-sections and they provide reliable estimates of
these due to the relatively simple structure of lithium-like ions. On
the other hand, few general formulas have been developed to calculate
the collisional cross-sections. Most of the proposed formulas give
unreliable results and they are thus not used. Various methods have
been devised in this work to calculate the collisional cross—-sections
and they are considereq in detail in the following Chapters. At large
values of n (n > 10), the rate coefficients should tend to the corres-—
ponding hydrogenic values. This provides a mean of estimaﬁing the reli-

ability of the methods used.

9. EXTRAPOLATION OF THE QUANTUM DEFECTS

9.1. The Quantum Defect Theory (QDT)

We use the Quantum Defect Theory for two purposes: to calculate the
energy levels of high~lying levels and to obtain photoionization cross-

sections. Both of these require knowledge of the quantum defect: at
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low negative values of the electron's energy for the former, and at
positive values of the electron's energy for the latter. The QDT devel-
oped by Seaton (1955, 1958a, 1966a, 1966b) provides the best method for
extrapolating the known quantuh defects to the continuum states of the
valence electron. The method should thus also provide reasonable esti-
mates of the quantum defects of high-lying levels since these are situ—
ated between the continuum states and the low-lying levels of the
valence electron for which experimental values of the quantum defects

are available.

According to the Quantum Defect Theory, the effective quantum numbers

»

N~ satisfy the relation

Tan (7n*) + R(€,) =0 ... (3.45)
where the function R(e.) is such that, for bound states,

R(en) = Ag(&n) Y&, eer(3.46)

Ag(€y) = 1 C1+126,)(1+2%€,) (| + /ezén), ... (3.47)

€n= -1/ n** ' ce-(3.48)

L is the orbital angular momentum quantum number, and Y(€n) can be

represented by an expansion of the form

K €

P €

Y(én)=

vee(3.49)
m
n

T MafiMa
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where «, and B, are fit parameters. It is possible to introduce a

function )L(e) such that
R (€)= Tan THCE), s (3.50)

/L(ﬁ) is the quantum defect function; for bound states, we write

/u,, =/u Cen), ...(3.51)

The solution of eq.(3.45) can then be written as

n* = n—/a,;, ' ... (3.52)
For continuum states, € becomes
_ . 2
€= g/ Z ... (3.53)

where E is the kinetic energy of the free electron. For small values of
€, }L(e) is related to the phase 5(6) of the continuum wave func-

tion by

§(e) = T e, ... (3.54)

The parameters «, and pm, used in eq.(3.49), are determined by fit-
ting them to the available term values. For a given value of L, Sea-

ton (1966b) recommends that we use the following expansion of Y(e) :
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Y, Ce) = éf_o o € / [/ + mi_’ ﬁmémj eee(3.55)
where ¢ = Pw( ri. | ... (3.56)

This insures that Y,(€) remains bounded as & ->e¢¢ and that it has

the asymptotic behavior

A~
Yy le) ~ € ve e (3.57)

required by Seaton (1966b). The known values of €, are fitted by a

least squares method to the expression
Tan [7T/ul (e)J =A16’:) YL (e) ...(3.58)

and the fit parameters &; and @M are obtained from the minimization

conditions derived in Appendix D.

The extrapolated values of /1£(£) are calculated from eq.(3.58)
with egs.(3.55) and (3.47). For bound states, }ln& is obtained by an
iterative method: a first approximation }Iff = @ is substituted in the
R.H.S. of eq.(3.58) by using eq.(3.48) and a better approximation ,H:Q
is obtained from the L.H.S. of eq.(3.58). The procedure is repeated
until sufficient accuracy is obtained. This method is used to obtain
the quantum defects of the 8s and 9s states of C IV and the 9s states of
NV and O VI. These values are given with superscript "a" in Tab.3.5.

For C IVand NV, they are found to be in satisfactory agreement with

-
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those calculated from the extrapolated term values given by Moore (1974,
1971). For continuous states, the calculation of )1x(€) as a function
of € is obtained from eq.(3.58) in a straightforward manner. /che)
. is used in the calculation of the photoionization cross-sections (see

Chapter VIII).

The accuracy of the extrapolated values of }*£(§) is restricted by
the number of term values that are available to calculate the parameters
oy and Fm. As XL increases, more term values are required to obtain a
uniform accuracy due to eq.(3.56). Since only five to seven term values
are available for each value of AL , this extrapolation procedure can
only be used for s and p states. The resulting fit parameters are given
in Tab.3.6. Using this method for d states produces unreliable results.
However, /hife) shows little wvariation for bound states:
0.202 < )*a(é) < 0.904. The value /).4'3 #.003 1is thus a reasonable

approximation for all continuum d states.

The fit parameters of Tab.3.6 reproduce most of the known s-state
quantum defects to at least 3~4S. The extrapolated quantum defects of
the bound s states can thus be expected to be of comparable accuracy.
For p states, the number of parameters edquals the number of known term
values. This method of estimating the acecuracy of the extrapolations
thus fails. However, an accuracy of 3-4S can also be expected for the
extrapolated quantum defects of the bound p states. As is evident from
Tab.3.7, the extrapolated quantum defects of the continuum s and p
states show 1little variation. An accuracy of at least 2-3S can be
expected for these extrapolations. In all cases and for all values of

£, an error of -
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A/ulce) < to.0l ... (3.59)

can be taken as a reasonable estimate of the maximum uncertainty in the

extrapolated quantum defects of the continuum states.

9.2. Graphical interpolation

The effective quantum numbers of Tab.3.5 with the superscript "b"
have been interpolated graphically from Fig.3.3. Graphical interpola-
tion is used because not enough data is available to use the Quantum

Defect Theory. As can be seen in Fig.3.3, an error estimate of
A/us 2 ¥0.00008 ee. (3.60)
on the interpolated quantum defects is reasonable.

9.3. Approximate methods

In Tab.3.5, the effective quantum numbers of g and h states with a
superscript "c" have been obtained from approximate methods due to the
lack of data. The interpolation is pefformed by considering the £, g,
and h sublevels of the n =5 and 6 levels of the ions C IV, NV, and
0 VI. For C 1V, all the term values of the states are known
(Moore, 1949). For N V and O VI, Moore (1949) gives the term values of
the 6f and the combined 6g+6h levels; the term values of the 5f levels
can be obtained by graphical interpolation (see Section 9.2 of this

Chapter). We thus have sufficient data to interpolate these states by
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applying the relative spacing of the levels observed for C IV to N V and

O VI.

In addition, we also separate the 6g and 6h levels and obtain their
term values from the term value of the combined 6g+6h level given by
Moore (1949). Even though the energy splitting of the 6g and 6h levels
is very small, this is done to have as complete a description of the
n &£ 6 states as possible. The average energy eigenvalue E, of a combi-
nation of levels nd is calculated from the individual energy eigenva-

lues E,y according to
wy, E, = ; Wy Eng .e.(3.61)

where W, and W, are the statistical weights of levels n and nf res-

pectively. For the combined 6g+6h level, we thus have

- _9 = [
Eeg-f—(.h Y Céﬁ + '3"5 E‘h . ees(3.62)

.

Since the energy separation of levels 6g and 6h, AE¢g,ch , is very
cR - .
small compared to E.q and E,, (for example, AE(qeh =0.5 cn™ while
<l
Ehg+eh = 48,774.1 cm"') ; We can put

Ec\g % Eéj—f—b/t "}’" AEcg,ch

Eg ® Eigren +7 AEcgeh vee(3.63)
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Table 3.6 - Fit parameters used in eq.(3.55) for the s and
the ions C IV, NV, and O VI.
State | Parameter C Iv NV 0 VI
oy | 5.354935x107" | 4.246545x1071 | 3.598317x107]
o | a | 3.326334x10710| 1.633376x10 .639833x10"
a, - 2.351671x10° . 848220x10%
i 8, | -1.303138x107! | 3.868594x10] .350781x10"
8 | 8, | -2.12084x107 | 5.611321x10° .360768x10°
8 - 1.235595x10% .971403x10°
ag | 1.227365x107 | 1.074347x107" | 7.773314x107°
a | o | 9.836635 9.988464 .055687x10]
@, | 2.026329x10° | 2.180029x10° .030797x10°
p By | 8.124956x10' | 9.358949x10 :224259x10°
B, | 1.726849x10° | 2.093684x10° . 439660x10°
i 8, | 1.385593x10° | 1.477086x10° .337748x10°
B, | -1.817164x10° | -1.007446x10° .861421x10°




Table 3.7 - Values of u(e) for the s and p continuum of the ions

C IV, NV, and O VI.

£ € C Iv NV 0 VI

0. 0.16 0.13 0.110
s

1. 0.18 0.11 0.091

u(e)

0. 0.039 0.034 0.025
p

1. 0.045 0.054 0.016

107
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We estimate the value of AE(q,.y for NVand O VI by applying the

ratio AEESE"Q“ / Eii‘h to these ions. We thus obtain
NE -
oV _
AE geh 2 11 em™ ... (3.64)

The effective quantum numbers of the 6g and 6h states of N V and O VI
can then be calculated from egs.(3.64), (3.63), (3.2), and the term

X
values of E:‘gmh and Efgg,,h given by Moore (1949).

The error on the quantum defects is estimated by comparing the quan-

tum defect of A Megreh with those of Ap, or Auen . We find that

the error cannot be greater than
Aﬂég Or‘h ,—\}-— i0.0000Z. 000(3.65)

The smallness of this'value is due to the small energy separation of
levels 6g and 6h. The error oh the quantum defects of the 5g levels of
N V and O VI calculated by keeping the relative splitting of the C 1V,
NV, and OVI £, g, and h levels constant is obtained from the uncer-

tainty of the 5f quantum defect:
A/AS'S o i O. OOOOS. 000(3066)

The uncertainties also depend on whether the methods used in this Sec-

tion are appropriate. Comparison of the gquantum defects of the £, g,



110
and h levels of C IV, NV, and O VI with one another and in particular

of Psq and Peg indicates that the interpolations are reasonable.



Chapter IV

C IV, NV, AND O VI: OSCILLATOR STRENGTHS

1. INTRODUCTION

Most of the data available on oscillator strengths have been obtained
from theoretical calculations. A considerable amount of work has been
done on the subject and complete bibliographies are available; some of
the more recent ones have been published by Glennon and Wiese (1966),
Miles and Wiese (197@), and Fuhr and Wiese (1971, 1973). Thus, although
a great number of oscillator strengths is needed in our work, we should

be able to obtain a reasonably accurate set of f-values.

2. AVAILABLE DATA

The large volume of f-value data available on lithium-like ions has
been critically evaluated by Martin and Wiese (1976a). From this, they
have compiled tables of oscillator strengths for the 2s -> np,
2p->ns,nd, 3s->np, 3p->ns, nd, 4s->np, and4dp->ns, nd (n & 7)
spectral series of the lithium isoelectronic sequence (Martin and

Wiese, 1976b).

Several types of systematic trends and fundamental spectroscopic

constraints have been applied to the data:

a. Regularities for individual transitions along an isoelectronic

sSequence. From perturbation theory, the oscillator strength can be

- 111 -



112
expanded in powers of the inverse nuclear charge £, to give
(Weiss, 1963; Crossley, 1969)

() ) - 2) -2
&n'-vn = §n‘4n + }ni_-,n ZN‘ + }N'-’ﬂ ZN A o, eee(4.1)

(o)
For lithium-like ions, fn:,n is simply the known hydrogen f-value;

[$)Y
5nL>n and 5£ﬂn are parameters that can be found from the data.

b. Regularities for the transitions of a spectral series. For the

case of the hydrogen atom, the oscillator strength behaves as
-3
3%vr-ww;:.-. ~oon .. (4.2)

along a spectral series. This behavior sets in for fairly small princi-
pal quantum numbers, usually before n reaches 18. Since the energy of
the highly excited states of the lithium-like ions rapidly approaches
the'hydrogenic value, .the oscillator strengths of the higher members of
the lithium-like spectral series can be expected to follow eq.(4.2) for
large n, provided n is replaced by the effective quantum number n* of

the state.

c. Requirement of continuity at the ionization limit. The absorption
oscillator strength for the n' -> n transition (n' < n) can be written

as

. 2 En
Sron == =M S, e (4.3)
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where E. is the energy separation of levels n' and n, Wn is the sta-
tistical weight of level n', and S,._,, is the line strength of the
n' -> n transition. All quantities are in atomic units. Similarly, for
an ionizing transition from a bound state n' to a continuum state of
energy E, a differential oscillator strength can be defined as (Burgess

and Seaton, 1968)

d;“,‘l__z_ I‘I'E »
e "5 o S, (€) .o (4.4)

where I,, is the ionization potential of state n' and E is the kinetic
energy of the ejected electron. The continuity of df,/dE across
the ionization 1limit has been shown to exist for hydrogen (Marr and
Creek, 1968). Marr and Creek also conclude that the assumption of con-
tinuity across the ionization limit of the principal series of the alka-
lies is justified within experimental accuracy. The discrete spectrum
and the continuum are connected through the relation (Martin and

Wiese, 1976a)

(g_f_..:) il FP ... (4.5)
dE discrete 2z*

where Z is the core charge of the ion. It should be noted here that
eq.(4.5) is strictly true only when the quantun defect is constant

within a spectral series.

d. £ sum rules. In this case, the most useful sum rule is the par-
tial sum rule of Wigner (1931) and Kirkwood (1932) which states that,

for one-electron systems, the sum over f of a spectral series
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n'2' -> £'+1 (including its continuum and all downward transitions, as

well as the virtual transitions into occupied states) is given by

= 1 ()443
an(ﬂl__),(l*‘ = 3 u-;l}(g-"' ) ' ceo(4.6)

and

_ o 2@4-)
th'}'—)l'—-l - —‘—3 2£'+’ - 000(407)

The one-electron model is a close approximation to the valence electron
of lithium-like ions. The sum rules (4.6) and (4.7) can thus be

expected to be accurate to within a few percent for these ions.

The resulting set of oscillator strengths varies smoothly along the
lithium isoelectronic sequence and the spectral series. According to
Martin and Wiese, this set of data should be regarded as a highly accu-

rate one,

Additional data can be obtained from the tables of Wiese et
al. (1966), an earlier critical data compilation. Many of the f-values
given in these tables are the same as the ones given by Martin and
Wiese (1976b). However, Wiese et al. (1966) also include oscillator
strengths for some 5&' => 64, 64 -> 74, and 72' -> 84 transitions.
Since these f-values have been calculated with the Coulomb approximation
of Bates and Damgaard (1949), Wiese et al. (1966) estimate their accu-

racy at 10%.
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3. GENERAL CALCULATIONS

3.1. Introduction

It is possible, under certain conditions, to carry out general calcu-
lations of oscillator strengths and thus obtain any f-value that is
needed. The absorption oscillator strength for the n'f' -> nf transi-

tion is expressed in terms of the line strength:

_ 2 _m  Enu,ns ,
3(nv.e'.>u1 = 3 jrez Zn(Zan'+—/) S 2t nt . ...(4.8)

_SN._“L is in atomic units (a2 e?).

If LS—coupling is applicable, and if the transition involves no equi-
valent electrons, then the line strength can be separated as follows

(Bates and Damgaard, 1949; Griem, 1964, p.48):

S(core, L' sL' T - core, nA S L J)

=4M) £(£)S%, .0 O (4.9)

vhere n'A'SL'J' and nL SLJ are the quantum numbers of the valence elec-
tron in its initial and final states respectively,
/&(7/[) = /J (l'SL.'—»XSL) represents the strength of the multiplet, and
A(£L) =4 (SL'J'>5LI) the relative strength of the spectral line
within the multiplet. The numerical values of these factors may be
obtained from tables given by Goldberg (1935, 1936), and White and Elia-

son (1933) or Russell (1936); their explicit form is given in
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Griem (1964, p.48). The evaluation of these factors for hydrogen is
greatly simplified if the multiplet splitting is neglected. The line
strengths are then summed over J and J', and the following expressions

are obtained (Condon and Shortley, 1935, p.239):
2
Sa‘l—aml-; =2 (2£+/)/€ (’Z’e") S w'L>nl-i
Spitonte, = 228 +1)(L+1)(22+3) O 1y 5 pgu. .. (4.10)

The same expressions are used to calculate the line strengths of transi-
tions in the lithium-like ions, since multiplet splitting is neglected

and since these ions are closely hydrogenic.

The transition integral Opg'mng 1S related to the radial matrix ele-

2
ment R:-a' by

2 i nd 12
O"%"’IJ =3 W[R""'] ...(4.11)

where

Ly = max (L)L), .ee(4.12)

2
7?,:“(: = f: Xpp () X () rdr, .. (4.13)

and Sy, is in atomic units (a2e?*). Ru(r) = X, () /r is the
normalized radial wave function of the valence electron in state nAk

expressed in atomic units. Different methods have been used to evaluate
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the wave functions of the lithium-like ions that are needed in eq.(4.13)

2

wi'mat * FOT example, Varsavsky (1963) uses the screening

to calculate ©
theory of Layzer (1959), Kelly (1964) uses the Slater approximation to
the Hartree-Fock method, and teibowitz (1972) uses the semi-empirical
polarization potential method of Caves and Dalgarno (1972). Unfortu-
nately, these methods are of very limited use since each transition must

be treated individually and the calculations rapidly become unmanageable

as n increases.

3.2. Coulomb approximation

3.2.a. Method of calculation

A relatively simple method of general applicability is the Coulomb
approximation (CA) proposed by Bates and Damgaard (1949). It is based
on the fact that for most transitions, the main contribution to the
integral (4.13) comes from a region in which the deviation of the poten—
tial of an atom or ion‘from its asymptotic Coulomb form is so small that
the deviation can altogether be neglected and the potential replaced by
its asymptotic Coulomb form. This method gives remarkably accurate
results for simple systems such as a single electron outside a closed

shell.

In a central field, the function ‘an(r) used in integral (4.13)

satisfies the differential equation

2 . .
j )i"‘ + (2\/,\1 - ﬁ%)- - b‘-nz) Xpe =0 .o (4.14)
-
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where Vy is the potential of the atom or ion and E, is the energy of

the state nf . The potential V,; is replaced by its asymptotic Coulomb

form

z
Ve & 2 .. (4.15)

where Z is the core charge of the ion. Eq.(4.15) 1is used in eq.(4.14)

to give

2X 27 L+1)
ddr?-u + (*Enﬂ + - Ll )an =0.

... (4.16)

Using the effective quantum number defined by

z
n* = =

VZ:& s ees(4.17)

the solution of eq.(4.16) can be written as

22
Xt % Woe gy —;}) ...(4.18)

where W p(x) is the Whittaker function, a particular confluent hyper-

geometric function. For integral values of n*, the normalization fac-

tor of function (4.18) is given by

\/ s ‘Zi . | ... (4.19)
n C(n*+L+1) M(n* _4()
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Expression (4.19) provides an excellent approximation to the normaliza-
tion factor of function (4.18) for 1large, non—integral values of n*;
however, for lower non-integral values of n*, a correction factor of
order unity given by Seaton (1966b) in his Quantum Defect Theory (see
Section 3 of Chapter VIII ) should multiply expression (4.19). We will
not include this correction factor in our work since we use the CA for

transitions with large values of n*.

‘The asymptotic behavior of the Whittaker function (4.18) is

~=r

n* o=
| Wn”)z*lz(zzr) ~ (22r~> e > 4t

n* n* too 't

where

a,= |

N

Q, 2’: [ LL+1) - n’*(n*-l)]

Ay = Ag-y ML;-L( (L+1) - (n* -+ /)(h"‘—t)]. . (4.20)

Combining egs.(4.18), (4.19), and (4.20), we can then write

JET n*-t
an(r) & \/ Z 2 " tz‘_; by (.zz\r-)

n*2 (n* +4+1) M(n¥-2) n*

where b _

|

|l

bt ! 'F[ [L(lﬂ)-—(ﬂ*—jfl)(ﬂ*-j)]. ..o (4.21)

t! J=e
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Eq.(4.21) is finally rewritten in the form

Zzr

X (1) = éﬁ Ce (n%,4) VE (zr)""t

where

n*,
* p) - b _3.>
(e (n*2) TR e T ) (h* : .o (4.22)

A similar expression for the initial state radial wavefunction is

obtained upon replacing n, L, and t by n', ', and s respectively.

The radial matrix element given by eq.(4.13) thus becomes

nx_ [ oo
Rep * = T Z Co(n*, ) Cp(n%,4)
- 27 ( nl;:,ﬂ:)

1% n% 4, ~s-T
nNT+h*+1-~5 e

"J:(z'”) d(Zr), ...(a.23)

This last integral is easily evaluated from the general formula (Spie-

gel, 1968, p.98)

—ax +
.COX" € de = T+ . ... (4.24)

an+|

Thus edq.(4.23) becomes

nl [ oo
Ryp % é_z Z Cs(n™* 2') Ce(n*,¢)

s= ‘t:

o
o

n'*+ n*,'_ 2—S~t

1k
X [-'(n'*+n*4—,2~5-’t)(-n—,n-;;%;> . oo (4.25)
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This sun can be evaluated in such a way that each successive term
decreases until a minimum term is reached, after which each successive
term increases indefinitely. ‘This is the characteristic behavior of a
certain type of asymptotic expansion. In the case of expansion (4.25),
the sum is terminated with the term preceding the minimun one; we label
this term P. The error in the sum is then numerically smaller than the
magnitude of the first neglected term of the sum, the minimum term P+l

(Olver, 1974, p.2; Rainville, 1968, p.35).

On the other hand, Bates and Damgaard (1949) terminate the sum (4.25)
by using a physical argument. In the sum over the integral of
eq.(4.23), we heglect those terms for which the powers of 2Zr are less
than 2, because the main contribution from these terms comes from
regions close to the origin where the CA does'not necessarily hold and
where the use of asymptotic expansions is not valid. We thus neglect

those terms of eq.(4.25) for which
s+t >n™* +n* -y, ... (4.26)
The range of allowed values of s+t is thus .

0

"

s+t ¢ Py .e. (4.27)

ee.(4.28)

3

where Pap = In‘t[ﬂ'*1—n*—l]

the integer part of (n"+n*-1).
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we find that the limit B, either corresponds
In all cases, we have

Interestingly enough
exactly to the limit P or is very close to it
... (4.29)

S
we will use the limit P obtained by terminating the asymp-

In our work, i
totic expansion mathematically because the sum evaluated in this manner
. nd
is more accurate, and the error in the value of R,y is also obtained

... (4.30)

The summation of eq.(4.25)

sZéo A s, T)

oss+t <P
eee(4.31)

is now simplified by making use of the following transformation (Rain-

A (s t-s).

ville, 1968, p.56)
oo . o T
Z A(53t> = Z_ 2.
t=o6 S=o

™3

1%
1
o

t=o
Expression (4.3@) thus becomes
had oo T ‘
2 A(S t) = © 2 A(SJ{:-——S)
S=e t=o t=o S=o
o<sS+Lgy oet g
P €
=5 7 A(S,‘t~3>. ... (4.32)
t=o S=0

Equation (4.25) can thus finally be rewritten as
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P
:?n’:j & -E—'_Z-,(/(n%;ﬂtf)g O W (0% ) [n*en* ... (4.33)

] t
*2-t)(.n*_+_n_*.>

.2,1'*
where
’ (n'*)n*ﬂ
WM * = e ‘
K(n'*£ N 1) 4 JF(”'*-I-,Q'-H) (n'*-4')
n'*+ nren¥e2
) ( n*) ( 2 ) , eee(4.34)
\/,"(n-kbg_,) /”(n&_/) n'* en*
. _ t ' Fl'* s
We(noa,net) = 2 by ()
| s t-s
« TT R(n™2') T P(n*4), - (4.35)
] JE!
P (w*4") = (n’*_i-r;)(n'*-é)—'//'(1’*/), .o (4.36)
;3.(”4/() - (ﬂ*‘J#l)(n*"J.) ——,((/C«f'/)' ees (4.37)

We use egs.(4.33) to (4.37) to evaluate the oscillator strengths of the
transitions that are not covered in the tables of Martin and

Wiese (1976b) or Wiese et al. (1966).

3.2.b. Accuracy
The error in the oscillator strengths calculated with the Coulomb

approximation is usually estimated to be ~10% for simple transitions
with low values of n (Wiese et al., 1966; Crossley, 1959). However,

since highly accurate values of the oscillator strengths of the lithium-
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like ions are available for low values of n (Martin'and Wiese, 1976b),
it is possible to compare these with the f-values calculated from the CA
to obtain a better estimate of the accuracy of the method as used in
this work. Except for a few cases, all oscillator strengths calculated
with the CA are found to be systematically lower than the corresponding
values of Martin and Wiese (1976b). In most cases, for n ¢ 7, the dif-
ference between the two sets of f-values 1is less than 15% for s-p tran-
sitions, with a maximum value of ~25%, and less than 5% for p-d transi-

tions.

At larger values of n, the error in the oscillator strengths
increases due to the fact that £, is proportional to both the tran—

sition integral O,._,, and the energy separation E,, of the states n'

"
and n, and both these quantities then have far greater uncertainties
than at low values of n. The error in QS:aM increases because the CA
becomes less accurate due to the large number of operations that must be
performed to evaluate eq.(4.33) and due to the resulting loss of signi-
ficant digits through truncation. This situation is further complicated
by the fact that the positive and negative parts of the transition
integral S,._,, almost exactly cancel each other. The energy eigenva-
lues of the higher states are not known and they ﬁust thus be extrapo-
lated from the data available on lower sta£es (see Section 9 of Chapter
IIT). Consequently, the error in E,, is much larger for transitions
involving high-lying quantum states, especially if the energy separation

of states n' and n is small.
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Since the error in the oscillator strengths of the transitions to

n > 8 states is thus dependent on individual transitions, no simple num-
erical estimate of the error can be given. However, after this work was
completed, tables of oscillator strengths were published by Lindgérd
~and Nielsen (1977) with which the f-values calculated from the CA can be
compared. The calculations of Lindgérd and Nielsen (1977) were carried
out with a numerical Coulomb approximation (NCA) in which the wave func-
tions used in eq.(4.13) are evaluated numerically from eq.(4.14). The
CA and NCA results agree to within 25% for s-p transitions, 5% for p-d
transitions, with a maximum of ~25% for smaller values, and a few per-

cent for d-f transitions, with a maximum of A 5% for smaller values.

The differences between the oscillator strengths of an = n-~-n' =0
transitions calculated with the CA and the NCA are however much larger;
the f-values may differ by as much as a factor. of three. However, Bates
and Damgaard (1949) mention that the CA gives reliable results for very
small An transitions, for which very 1little cancellation of the posi-
tive and negative parté of the integral Gu,, occurs. The large dif-
ferences between the f-values must thus be due almost entirely to the
uncertainty in the energy of these states, especially since the energy
separation between them is very small. That this is indeed the case can
be shown by calculating the oscillator strengths of the An = ¢ transi-
tions with a method different from the CA. Equation (4.43), which is
derived further on in this Chapter, is independent of the CA; the only
extrapolated quantity on which it depends is the energy separation of
the states., The f-values calculated from it are in close agreement with

those obtained from eq.(4.33) of the CA. The uncertainties 1in the
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energy eigenvalues of high-lying quantum states thus significantly
affect the oscillator strengths of transitions etween states of small

energy separation.

As a general rule, we observe that the oscillator strengths of tran-
sitions involving s states calculated with the CA have much larger
uncertainties than those involving p, d, and higher ,E—valu; states.
The reason for this behavior is that the wave functions of s states have
an antinode close to the origin, whereas the wavefunctions of £ » p
states are quite unimportant at small radial distances (Bates and Dam—
gaard, 1949). Since the CA includes only contributions to the transi-
tion integral G,._,, coming from the wave functions at large radial dis-
tances, the finite value of the s state wavefunctions close to the

origin is neglected and the resulting oscillator strengths thus have

greater uncertainties.

3.3. Hydrogenic values

3.3.a. Method of calculation

As A increases, the lithium-like states become more hydrogenic and
the oscillator strengths tend to the hydrogenic values, as can be seen
in Fig.4.1, 4.2, and 4.3. Consequently,‘ for transitions from states
with L'% £, the oscillator strengths are calculated with the simpler
hydrogenic expression fGreen et al,, 1957):

_ [z 2*Y 4 ne \2
J(n',e’—»nl = ‘3“ ',?{"‘77‘3_ 7’:—,— (E'I’l'> eee(4.38)
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nl . . . .
where Rn‘.&' is given by eq.(4.13), Z is the core charge, and A, is the
maximum value of £' and L. Since the hydrogenic radial wavefunctions
are known exactly, the integral (4.13) can readily be evaluated and, in

the general case, is given by the closed expression (Gordon, 1929):

fk n'd-1 { "% (ne)] (N e L))
4 z(28-0!  (n-A-1)) (n'-2)!
n+en'—2£-2
(4nn')1“ (n-n')
(’H,n,)ni»n‘
X[QE ("ﬂ’f’j‘*’/ nf'e'zj)m>

n-n'\% g
—(n+n') F( el =g -nt ey 2 (,,:’L:,r;z)]} ... (4.39)

where , F, (a,b;c;x) is the hypergeometric function

2

a.b a(a~-1)b(b- X
LF dbjc;x)= | +52 —= " + <e) 1) - fene oal(4.40)

and the quantum number n is associated with the state with the largest

A-value (in eq.4.39 only).

For An = ¢ transitions, a different expression is used to calculate

2
{Rug}*  (Bethe and salpeter, 1957, p.263):
ng )L 9 a2* 2
{'?nz' = 4 =22 (”1‘/(7 ) .e:(4.41)
The oscillator strength is then given by

3 . 2
f:ﬂ’enzz;}‘('@,‘z"‘i‘ -—L(?—-T— /72('77-— >) .. (4.42)
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where ng and N, are the principal quantum numbers associated with the
nl' and nl states respectively and the expression ( 1/ nf. - l/n:‘ ) is
related to the energy separation between the two states. For hydrogen,
this energy separation is theoretically zero and the corresponding
oscillator strength is also zero. However, the energy separation of the
ny' and nf states of lithium-like ions is finite and the oscillator
strength of the transition thus has a non-zero value. The actual f-va-
lue can be evaluated from eq.(4.42) provided Ny and n, are replaced by
their corresponding effective quantum numbers n; and n: respectively,

We then have

=3 _ 2 Laipa_g2) [t !
Jcnl'-ml 4 227+ n*(n j;)('h;,:'—z" —n;—z). ee.(4.43)

We wuse this expression to estimate the oscillator strengths of the

n ->nf, L'y f transitions of C IV, N V, and O VI.

3.3.b. Accuracy

In Tab.4.1, the oscillator strengths of some AN =0 s -> p and
p —=> d transitions with 1low values of n calculated from eq.(4.43) are
compared with the critically evaluated wvalues of Martin and
Wiese (1976b). In most cases, the results agree to better than 10%;
eq.(4.43), when applied to nf -> nQ ’ L'z £ transitions, can thus be
expected to be more accurate than this value if the effective quantum
nunbers of the states are well known. Otherwise, as mentioned previ-
ously, the accuracy of these f-values is limited by the accuracy with

which the energy separation of the two states is known.
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Table 4.1 - Comparison of the oscillator strengths of some An=0 transitions
calculated from eq.(4.43) with the values given by Martin and Wiese (1976b).

Ion
Tran- CIv NV ooV H I
sition
0.286 0.235 0.199
25+2p 0
0.331 0.264 0.220
0.481 0.393 0.335
35>3p 0

0.529 0.427 0.357

0.68 0.54 0.45
4s->4p 0

0.71 0.58 0.49

0.0623 | 0.0544 | 0.0481
3p+3d 0

0.0619 | 0.0541 | 0.0483

0.117 | 0.103 | 0.091
Ap+4d 0

0.1 0.096 0.086

Top value: from Martin and Wiese (1976b)
Bottom value: calculated from eq.(4.43)



133

On the other hand, the accuracy of the oscillator strengths of the
n'' -> nl transitions obtained from the corresponding hydrogenic
values with egs.(4.38) and (4.39) depends on how close to hydrogenic the
n'{' and n{ states are. For the L' 2z f states, this is a reasonably
good approximation and an accuracy of 2-3S can be expected in the oscil-

lator strengths involving these states.

4. TRANSITIONS INVOLVING AVERAGE STATES

The oscillator strengths of transitions involving average states can
be obtained from the oscillator strengths of transitions between indivi-
dual states by using summation rules. These are derived from the fact
that the line strength of a group of lines equals the sum of the line
strengths of the individual 1lines comprising the group (Wiese et

al., 1966):

Spyan = 127_1 Snigtant. ... (4.04)

The relation between the oscillator strength and the line strength of an

absorption line is

— / (lJn',("
‘Sn‘l'—bnl - et T JC;,Q'_,,,‘Q‘ ... (4.45)
L' nk
r . 8TT*m
vhere C "'_E;ZTE;f) ces (4.46)

Wny is the statistical weight of level n'f', V.., is the frequency

of the 1line emitted during the n'#®' -> nf& transition, and the other
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symbols have their usual meaning. In most cases, 1if the splitting of

the levels due to the different {-values is not too large, we can put

D & P

nl—n-

eee(4.47)

A
Dn'l'—-r ng — ne'>n

Consider a n'£' -> n transition. From eq.(4.45), we can write

— [} Wa't! f
S, ptsn & e, Intin .e.(4.48)
-’

which, from eq.(4.44), also equals
Sppten = %: Snistoone S .o (4.49)

substituting from eq.(4.45), eq.(4.49) becomes

{ IAMYL
Spgran = FZ u” Fogr g« .e.(4.50)
n'g'>nl

Thus if we equate relations (4.48) and (4.50), we get the summation rule

Dnit—
f = z Lnten { : ...(4.51
”w'_gn 'e Dﬂ‘-e,—)nl ’I'.l’ "/e ‘ ( )

and using eq.(4.47), we obtain

fn'.l’-—»n 2 %fnit'—-bnl. ... (4.52)

Similarly, for the n' -> nf transitions, we obtain



[}

Z INRTY Un'-»nl JL
F Wn Dnt'snd n'e'—snk

-f;Lonf

L
Wn'g!
& % Wt fn’.l'—anl

and, for the n' -> n transitions,

‘ 5 Wttt Pn'sn J(
— 1!
n'-n 2 Y Uy, n'd'->n

A Wniy!
- ;; Wy ;ﬁﬂ!uﬁn

or
- Pnsn
Tuin = F i fnt
® 2 j£”~>n£'
L
5. RESULTS

The final set of oscillator strengths for all
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... (4.53)

eoo (4.54)

«s.(4.55)

... (4.56)

... (4.57)

eeo(4.58)

allowed transitions

possible between all levels which are relevant to this work is given in

Tables 4.2, 4.3, and 4.4 for the lithium-like ions C 1V,

respectively, and in Tab.4.5.

and 0 VI
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Table 4.2 - continued

n'-+n

transition

final state n

4f 5f 6f 5q 69 6h
-0.843 -0.334 -0.164 -0.373 -0.277 -0.451
21 .
Ty D) (-1)
-0.294 -0.943 -0.277 -0.848 -0.378 -0.375
8<LL21> . . . .
(-2) | (-2) 1) | (c2) | (-1) | (1)
-0.128 ~-0.366 -0.864 -0.290 -0.105 -0.816
L2
WOy | 2) | (=) | 2y ] (G| (L2
1.02 0.157 0.542
3d (1)
0.279 0.995 0.186
= £ -0.128 | 0.533 |. 0.837
s (-1) (-2)
IS
v 6d -0,228 -0.334 0.863
- (-2) (-1) (-2)
ES 1.35 0.182
21 4 . .
i (();21\7 1.19
2 !
-0.949 0.857
ot (-2) | (53)
5 | -1-05 | -0.480 0.738 | 1.68
(-3) (-2)
6 -0.142 -0.925 -0.667 0.12
g (-3) (-3)
-1.37 -0.10
6 R
h (-3)

Power of ten is given in parenthesis
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Table 4.2 - continued
n'‘+n transition

11

O

Q0 — —
o o~ (92 o N O
i 1 N
O~ O ~— o

10

2s
5s
bs
7s
8s

— N o
o N —~ [Te]
o < AN [e0]
s 1
o [ o
(% o o
(@] N (3]

U 93035 |eljluL

(-2) (-2) (-2)

0.101

0.290

(-2)
2.03

82y
9{x2 1y

Power of ten is given in parenthesis
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Table 4.3 - continued

n's>n transition

final state n

4 5f 6F 5g 69 6h
-0.843 | -0.333 | -0.164 | -0.373 | -0.277 } -0.45]
hadd RS (-1)
-0.293 | -0.943 | -0.278 | -0.848 | -0.378 | -0.375
BCOHD () | ) | (D) | 2y | ) | )
-0.127 | -0.366 | -0.864 | ~-0.290 | -0.105 | -0.816
WO 2y | (o) | 2y | G2y | () | (2
1.02 0.157 0.542
3d (1)
0.281 0.886 0.186
= 5d -0.127 0.440 0.839
g 1) | (-2)
(1]
« 6d -0.226 | -0.332 | 0.606
— ((2) | (1) | (-2)
=
e}
:E 4f 1.35 0.182
0.463 1.19
5f (-3)
-0.949 0.857
of (-2) | (-3)
5 -1.05 -0.360 0.738 1.68
g (-3) | (-2)
6 -0.142 | -0.925 | -0.667 0.6
d (-3) (-4)
| 137 | -0.5
6h (-2)

Power of ten is given in parenthesis
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14
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final state n
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0.294

n'->n transition

11
(-2)
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(-2)

Table 4.3 - continued
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Power of ten is given in parenthesis
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Table 4.4 - continued

n'->n transition

final state n

4f 5f 6f 5¢g 69 6n
-0.843 -0.333 -0.164 -0.373 -0.277 -0.45
<821y (_2) (_]) (_])
-0.293 -0.%842 -0.277 -0.848 -0.378 -0.375
BT () | G2y e | Gy e L)
-0.127 -0.366 ~-0.873 -0.290 -0.105 -0.816
‘ . .
I | G TR T L TEny | T
1.02 0.157 0.542
0.245 0.886 0.186
= 54 -0.127 0.552 0.838
g (-1) (~2)
B
n 6d -0.228 -0.335 0.965
- -2) | (-1) | (-2)
Y
:E ¢ 1.356 0.182
0.309 1.19
hf (-3)
-0.949 0.857
6f (<2) | (-3)
. -1.05 |-0.240 | 0.738 | 1.68
g (-3) (-2)
6 -0.142 -0.925 -0.667 0.3
g (-3) (-4)
6h -1.37 Egég

Power of ten is given in parenthesis
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Table 4.4 - continued

n'sn transition

final state n

10 1 12 13 14 15

2 0.317 0.235 0.180 0.140 0.112 0.904

(-2) (-2) | (-2) (-2) (-2) (-3)

3s 0.569 0.415 0.312 0.241 0.191 0.153

(-2) (-2) (-2) (-2) (-2) (-2)

4s 0.968 0.686 0.506 0.385 0. 301 0.240

(-2) (-2) (-2) (-2) (-2) (-2)

5s 0.162 0.110 0.788 0.586 0.449 0.353

(-1) (-1) (-2) (-2) (-2) (-2)

6 0.282 0.179 0,122 0.880 0.659 0.508

(-1) (-1) (-1) (-2) (-2) (-2)

75 0.543 | 0.308 | 0.796 | 0.135 | 0.972 | 0.730

(-1) (-1) (-1) (-1) (-2) (-2)

8s 0.126 0.585 0.332 0.212 0.146 0.106

) (-1) 1) | 1) | (-1 | (-1)
<

9 9s 0.448 0.134 0.623 0.355 0.226 0.156

5 -1) | (1) | (-1 (-1)
o

= 2p 0.414 0.305 0.231 0.179 0.143 0.115

2 (-2) (-2) (-2) (-2) (-2) (-2)

= 3p 0.844 ' 0.609 0.456 0.350 0.275 0.221

(-2) (-2) (-2) (-2) (-2) (-2)

4 0.147 0.103 0.755 0.572 0.444 0.352

P 1) | N ) | ) | ) | (-2

5p 0.252 0.1€8 0.119 0.879 0.670 0.524

(-1) (-1) (-1) | (-2) (-2) (-2)

6p 0.446 0.277 0.187 0.133 0.987 0.756

-1) | (-1) (-1) (-1) (-2) | (-2)

0.925 0.446 0.252 0.161 0.110 0.792

e Ly ey e | e ] e

. 0.290 0.107 0.483 0.273 0.175 0.118

8Lz7 1) | e e

2.03 0.376 0.109 0.516 0.294 0.7184

Ly (-1) (-1) (-1)

Power of ten is given in parenthesis
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0.367

final state n

12

2.38

n'sn transition

1

10

-1.81

3d
ad
5d
6d
5f
6f

59
69
6h

10

11

Table 4.5 - Oscillator strengths of the ions C IV, NV, and 0 VI used

in this work.

4 933s (eiLul

0.133
0.420
2.95

0.394
2.76
-2.57

-2.00 2.57
-0.289 | -2.38
-0.315

-0.237

12

Power of ten is given in parenthesis



Chapter V

CIV, NV, AND O VI: COLLISIONAL IONIZATION RATE COEFFICIENTS

1. INTRODUCTION

A very limited amount of data is available on the collisional ioniza-
tion cross-sections or rate coefficients of the lithium-like ions C IV,
N V, and O VI. Cross-section data are given in

Trefftz (1963): 2s state of O VI,

Lotz (1967, 1968): 2s state of C IV, NV, and O VI,
and rate coefficients are discussed in

Kulander (1974): 2s state of NV and O VI,

Runze (1971): 2s state of C IV, NV, and O VI, 2p state of O VI.
Most of the work has been done on the ground state; very little atten-
tion has been given to the excited states. Furthermore, there is no
simple general method of obtaining reliable estimates of the rate coef-

ficients needed in this work.

2. CROSS—-SECTION DATA

Trefftz (1963) calculates the electron ‘impact ionization cross-sec-
tion of the 2s state of O VI with the Coulomb-Born approximation, with
and without exchange. The inclusion of exchange between the scattered
and the ejected electrons reduces the cross-section to less than 64% of

the non-exchange cross-—section at maximum.

- 149 -
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Lotz (1967, 1968) proposes an empirical expression for single ioniza-
tion of atoms and ions from the ground state that approximatés experi-
mentally determined cross-sections within the experimental error and, in
most cases, within 1% over the energy range from the threshold to
10 kev. The formula cannot reproduce the fine structures observed in
the cross-section curves, but it has the advantage that it applies to

all elements.

Iotz's formula for the total cross-section for single ionization from

the ground state is written in the general form

G(E)

E a: g, An(esr) (EP)”

"

i L b e_.c.-_(E/'P:-l)}

«es (5.1)
vhere i is the subshell from which ionization occurs and N is the total
nunber of subshells which contribute to the cross—section; N is usually
small. The subshells.are counted inwards, starting from the outermost
one for which i = 1. %, is tﬁe nunber of equivalent electrons in sub-
shell i and qg, bi, and c¢; are constants which are adjusted to the
available data. P, is the'binding energy of the electrons in subshell
i and E is the kinetic energy of the impacting electron; the condition
E > P, holds for ionization from the ¥ subshell. Formula (5.1)
gives the correct theoretical energy dependence both for small and large

energies of the impacting electron; for small energies, we have (Bur-

gess, 1961; Geltman et al., 1963)

G(E) » — - ) for E ~ 7P, e (5.2)
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and for large energies (Massey and Burhop, 1952, p.140)

B(E) ~ '/QE__E"“ for E >>?,;. eee(5.3)

For four times and higher ionized atoms, Lotz assumes

a; = 4.5 x IO~‘4 em? eV?
b. = o. .o (5.4)

This assumption gives results which agree within a few percent with
theoretical calculations of Rudge and Schwartz (1966) for a hydrogen-
like ion with high nuclear charge %, in the. Born-exchange approxima-
tion. For lithium-like ions, we neglect inner shell ionization which
occurs only at high wvalues of E; then N = 1. We also have, for the
valence electron, ¥, =1 and P, = 1,5, the ionization potential of the
ground state, Expressing the énergy of the impacting electron in units

of the threshold energy for ionization

U= E /I:s), ' ... (5.5)

we can write the ground state collisional ionization cross-section of

the jons C 1V, NV, and O VI as

Ars Lnu
== ...(5.6
IZ T« o

G, (u)=
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where da; = 4.5 x 187" n?ev? and I, is in eV. 1In Fig.5.1, we com—
pare the cross-section of the 2s state of O VI as calculated by lotz's
formula with that given by Trefftz. It is seen that the results
obtained with ILotz's eq.(5.6) are in approximate agreement with the

values of the cross-section with exchange calculated by Trefftz.

Integrating eq.(5.6) over a Maxwellian energy distribution function

£
dn _ 2 , E kT
n kT T T € de, eee(5.7)

we obtain the rate coefficient for electron impact ionization of the

ground state of the ions C IV, N V, and O VI:

Sas CT) = ¢.7 x /07—1-3—"‘5—— £, ‘ ‘53‘) em®s™ (5.8

where [E,(X) 1is the exponential integral and T, and T are in eV.

For T in K and T,g in‘Rydbergs, eq.(5.8) becomes

2.4 x 1075 T -
S,s (T) ='E——‘/:7__—‘ &, (/5’7, 390 7:7‘5 em®s™! (5.9
235

3. RATE COEFFICIENT DATA
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3.1. Ground state

Kulander (197d) compares the collisional ionization rate coefficients
of the ground state of N V and O VI calculated with an empirical and a
semi-empirical expression, vafious classical approximations, and the
formula of Lotz (1967, 1968). The coefficients are found to agree with

each other within a factor of two.

Kunze (1971) has experimentally measured the collisional ionization
rate coefficients of the 2s state of the ions C IV, NV, and O VI. The
experimental rate coefficients he obtains are only about /8% of theoret-
ical rates calculated with a semi-empirical expression which he proposes
(eq.5.10). However, this is within the experimental accuracy estimate
of a factor of two or better quoted by Kunze, and these results are thus
in agreement with theory. Kunze also mentions possible systematic
errors in his measurements which would tend to yield values of the rate

coefficients which are too low.

The semi-empirical formula proposed by Kunze is

S, (T)= 1.5x10"° %”'—f [(,én i‘i_g)s 4,40]

- Ant
< IRT @7 TE s

em>s57!
I,,z +3kT

S e (5.10)
This equation gives a ~10% fit in the temperature range
Tw/10 ¢ kT ¢ 180 X,, to the rate coefficients derived for hydrogenic
ions by Rudge and Schwartz (1966) with the Born-exchange approximation.

The rate coefficients calculated with eq.(5.16) are also in agreement
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with results obtained from Lotz's formula (5.9) to within 15% as shown
in Fig.5.2, and with unpublished calculations of Schwartz (1971), men-

tioned by Kunze, to within ~10%.

3.2. Excited states

According to Kunze, edq.(5.10) 1is also applicable to excited states;
results of Schwartz (1971) on the 2p state of O VI can be approximated
to within ~29% with eq.(5.19). However, it should be noted that as n
increases, I,, decreases and the range of validity of this equation is

accordingly reduced.

4. RATE COEFFICIENTS OF THE EXCITED STATES

The applicability of Kunze's semi-empirical expression to excited
states suggests that Lotz's formula (5.9) may also be used to calculate
the collisional ionization rate coefficients of the excited states of
the ions C IV, NV, and O VI. Assuming that the parameter a,s is a
constant for all states nd , it is then possible to generalize eq.(5.9)

to excited states as follows:

-5
Sy (T) = ﬁiﬂ%‘—— E, (157, 890 —’:;Z:-'-'—l) cms™!h L (s.11)
nk

where ];1, the ionization potential of the electron in state nl, is in
Rydbergs and T in K. In Fig.5.3, we compare the rate coefficients of
the 2p state of O VI and the 5d state of N V as calculated with Kunze's

eq.(5.19) and Iotz's eq.(5.11). The results are in close agreement;

Lotz's rate coefficients are slightly greater than the ones calculated
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with Kunze's equation, except at very high values of T (KT >~10 1T, )

where the coefficients diverge substantially.

The reason for this agreement becomes evident when a detailed inves-~
tigation of equations (5.10) and (5.11) is carried out. The collisional

ionization rate coefficient of state nf can be written as

ox 107 ~0
S () = % & f) ... (5.12)

where ©6=T,/kRT and £(8) is a factor which has different ana-

lytical forms in Lotz's and Kunze's work: 1in Lotz's eq.(5.11), we have

£ (e) = 8e®E, )

/ /
A - .L. ..%..;. p— PP .
= -t 0@ ce.(5.13)

Kunze's edq.(5.10) requires

f,((e)= l+ ( ) ' ... (5.14)

3
/+-9—

0

$,.(8)  is well-behaved for all values of €, whereas $,(6) becomes
negative for © > ~122¢0 (kT < ~X,./1220). " However, as can be seen in
Fig.5.4 where we compare £,(6) with the positive part of §,(9) ,

the two functions agree to within 28% in the region

! <@ ¢ 300
100

300

_Int. < kT ¢ 100 Inf)
ee.(5.15)
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This is the region where equations (5.1) and (5.11) are usually

applied. Kunze's estimated range of validity of eq.(5.18), viz.

It ¢ hT < 10 Ly

is well within the limits (5.15).

Lotz's semi-empirical formula (5.11) will be used in this work.
There are many reasons which support this choice:

l. Lotz's formula is derived from a semi-empirical expression with
~ three adjustable parameters which can be chosen such that all available
exprerimental data can be reproduced. On the other hand, Kunze intro-

duces an empirical correction factor
/4(7) ~ (Ln 4°kT) + 40 .. (5.16)

in the rate coefficient which is not based on any known behavior of the
cross-section or the rate coefficient.

2. Kunze's eq.(5.10) breaks down at low values of T; Lotz's formula
remains well-behaved for all T.

3. The form of Lotz's equation is simpler and more aesthetic. The
evaluation of the exponential integral poses no serious problem since
well-known rational approximations to this function are available (Abra-

mowitz and Stegun, 1965, p.231; Cody and Thacher, 1968).
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5. COMPARISON WITH HYDROGENIC VALUES

The rate coefficients of the average states n are obtained from the
rate coefficients of the individual nf states as follows. The cross-
section of the average state n is computed with (Moiseiwitsch and

Smith, 1968)

- nt .
Gn = xZ o e eee (5.17)

vhere Wy and w, are the statistical weights of levels nf and n res-

pectively. Substituting for w, and w, in eq.(5.17), we obtain

- - 24 +1 G
On= Z Tz Pn, ... (5.18)

Since the rate coefficient is obtained from the cross-section by a
straightforward integration over a Maxwellian energy distributien func-

tion, we then have

g
Sa(T) = %:—2—5% Sne (7). .. (5.19)

In Fig.5.5, we compare the values of Sn(T) for the lithium-like
ion C IV calculated using eq.(5.19) with the values for a hydrogenic ion
with Z = 4 calculated with a semi-empirical formula due to Drawin (1961,
1962, 1963, 1966) (see Section 4 of Chapter II). The lithium-like rate

coefficients are observed to be closely hydrogenic. However, the dif-
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ferences between the two coefficients are more pronounced at low temper-

atures and small n.

6. ACCURACY OF THE RATE COEFFICIENTS

Lotz (1968) estimates the error on the ground state cross-sections
calculated with eq.(5.1) to be not higher than j:g%. The rate coeffi-
cients of the excited states calculated with eq.(5.11) should also be
reasonably good estimates of the actual coefficients due to the close
agreement between the calculations of Lotz and Kunze for
T, /300 ¢ kT ¢ 100 I,,. Furthermore, the lithium-like rate coeffi-
cients are within a factor of 1.5 of the corresponding hydrogenic values
for T 2> 4000 K. Accordingly, we estimate the rate coefficients of the
excited states of lithium-like ions calculated with eq.(5.11) to be
within a factor of two or better of the actual coefficients provided

that inner shell ionization is negligible. According to Kunze (1971),

this should be the case for kT ¢ 10 TI,.
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Chapter VI

C IV, NV, AND O VI: COLLISIONAL EXCITATION RATE COEFFICIENTS

1. INTRODUCTION

A very large number of excitation cross—sections is required in this
work. The cross-sections must be known as a function of the kinetic
energy of the impacting electron for each of the 496 transitions possi-
ble between the 32 states considered in our calculations. Unfortu-
nately, the available data are but a very small fraction of the required

cross-sections.

A good number of approximations have been devised to calculate exci-
tation cross—sections (Moiseiwitsch and Smith,'l958). Consequently, the
degree of accuracy of the available data 1is not uniform; it depends on
the approximation that is used. Some of the more important references
on the electron impact excitation of the lithium-like ions C IV, NV,
and O VI are given below:

Bely (1962): O VI - 2s -> 2p, 3p;

Bely (1965): Li isoelectronic sequence (Iso) - 2s -> np;

Burke et al. (1966): N V - 2s -> 2p, 3s, 3p, 3d;

2p -> 3s, 3p, 3d;
3s ~> 3p, 3d; 3p -> 34;

Bely (1966a): Iso - 2s -> np;

Bely (1966b): 1Iso - 2s -> ns, nd;

Moiseiwitsch and Smith (1968): review article;

Bely and Van Regemorter (1978): review article;

- 164 -



165
Davis and Morin (1978): N V - 5p => 6s; 65 ~> 7p; 6p —=> 7s, 7d;
Boland et al. (1970): N V - 2s -> 2p, 3s, 3p, 34, 4p;
Bely and Petrini (1978): 1Iso - 2p -> ns, np, nd;
Kunze and Johnston (1971): NV - 2s -> 2p, 3s, 3p, 3d, 4s, 4p, Ad;
OVI - 2s -> 2p, 3s, 3p, 34, 4s, 4p, 44;
Flower (1971): NV - 2s -> 2p, 3s, 3p, 34;
2p > 3s, 3p, 34;
Petrini (1972): 1Iso - 2s -> nf;
Bradbury et al. (1973): NV - 2s => 2p;
Henry (1974): NV - 2s -> 3s, 3p, 34;
Hayes (1975): NV - 2s -> 2p, 3s, 3p, 34;
Presnyakov and Urnov (1975): O VI - 2s -> 3s; 2p -> 3s.
Most calculations have been carried out on the excitations from the
ground state and the first excited state. ‘ Excitations from higher

excited states have been neglected.

2. AVAILABLE DATA

2.1. Theoretical calculations

The most general work available on the excitation of the 2s and 2p
states has been done by Bely with the relatively simple Coulomb-Born
approximation. His work can be extrapolated to all values of n of the
2s -> ns, np, nd, nf and 2p -> ns, np, nd transitions of all 1lithium-
like ions by a simple method (Bely, 1966a). Although Bely's calcula-
tions may not be as accurate as more sophisticated ones, the fact that a

uniform set of cross-sections is obtained is a definite advantage espe-
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cially since the actual values of the cross-sections are not known

exactly.

Calculations on the excitation from higher excited states are very
scarce. Burke et al. (1966) have carried out Coulomb-Born calculations
on the 3s -> 3p, 3d and 3p -> 3d transitions of NV while Davis and
Morin (1970), using a semiclassical approximation, have done calcula-
tions on the 5p -> 6s, #6s -> 7P, and 6p -> 7s, 7d transitions of N V.

Both calculations should be used with caution.

Some of Burke's cross-sections for excitation from the 2s and 2p
states have been shown to be in error: Norcross (1969) has found that
all strong coupling calculations performed prior to 1969 can be expected
to have large uncertainties; Burke carries out a strong coupling calcu-
lation for the 2s -> 3p transition. Bely and Petrini (1979) mention
that Burke's cross-sections for the 2p —> 3p,‘ 3d transitions are wrong
due to a mistake in the final calculations; however, the results for the
2p —-> 3s transition are correct. We should thus be careful when using

the 3s -> 3p, 3d and 3p -> 3d cross—sections calculated by Burke et al.

The calculations of Davis and Morin, performed with a semiclassical
approximation, will probably not have the same accuracy as cross—sec-
tions calculated with the Coulomb-Born approximation., However, Davis
and Morin claim that their results should be in reasonable agreement

with experiment.

Since 1978, calculations have been performed only on a few selected

transitions from the 2s and 2p states; not even approximate calculations
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for excitations from higher excited states have been made. The accuracy
of the excitation cross-sections has been improved by including more
sophisticated quantum mechanical effects in the approximations used.
The resulting data are however less useful for our purposes since the
cross-section values are calculated only for a very limited number of
incident electron energies. Consequently, we will use the Coulomb-Born
calculations of Bely and Petrini (Bely, 1966a, b; Bely and
Petrini, 1979; Petrini, 1972) for excitation from the 2s and 2p states,
especially since, as can be seen in Fig.6.1 and 6.2, the more sophisti-

cated approximations do not affect the cross—sections significantly.

2.2. General calculations

Due to the lack of data, a general method of calculating excitation
cross—sections with reasonable accuracy would be most useful. Unfortu-
nately, the general formulas available are highly inaccurate and unreli-

able.

One of the best kno&n approximation was obtained by Seaton (1962) by
treating the collisional excitaﬁion as a radiative process. The semi-
empirical formula obtained in this manner is applicable only to opti-
cally allowed transitions and is proportional to the absorption oscilla-
tor strength of the corresponding optical “transition. Unfortunately,
the formula is also proportional to an effective Gaunt factor § which
has to be calculated for each individual transition and which is a func-
tion of the incident electron energy. Van Regemorter (1962) proposed
using an average value § ~ .2 for excitation of positive ions at low

energies,
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In Fig.6.1 and 6.2, we compare the cross-sections for the 2s -> 2p
and 2s -> 3p transitions of N V as calculated from Seaton's formula by
putting é = .2 with the values calculated by Bely (1966a) from the
Coulomb-Born approximation. We see that Seaton's formula should be used
with caution; results from it may be in considerable error (Bely and Van
Regemorter, 1978). We also note that the asymptotic behavior of Sea-
ton's formula is 1/E, which differs from the theoretically expected
2nE/E behavior (Massey and Burhop, 1952, _p.l4ﬂ). The formula also
has the disadvantage that it applies only to optically allowed transi-

tions.

2.3. Hydrogenic values

The cross—-sections for excitation from high-lying lithiun-like quan-
tum states could be estimated by using the corresponding hydreogenic
cross-sections. However, this method can introduce large errors in the
cross—-sections. Bely (1966b) finds that optically forbidden transitions
play an important role in lithium-like ions. For example, at low
energy, the transitions from the 2s state of N V are dominated by the
AL = 2 forbidden transiion; the cross-section for the AL = 0§ forbidden
transition is also close to the aL =1 optically allowed transition as
is seen in Fig.6.3. On the other hand, the hydrogen cross-sections are
dominated by the optically allowed transitions. This shows a fundamen-
tal difference between lithium-like and hydrogenic electron impact exci-
tation cross—-sections which indicates that straightforward application
of hydrogenic cross—sections to high-lying lithium-like quantum states

in not justified.
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2.4. Experimental measurements

Some experimental work on collisional excitation from the ground
state of lithium—1like ions has been done by Boland et al. (1979), Kunze

and Johnston (1971), and Bradbury et al. (1973).

Bradbury et al. (1973) have studied the 2s -> 2p cross-section of N V
in the energy range 125 to 408 eV. They found the measured cross—sec-
tion to be consistently 1larger than the theoretical values of
Bely (1966a) and Burke (1966) by an amount somewhat larger than the
estimated theoretical error. However, there is a possibility of syste-

matic errors and cascade effects.

Boland et al. (1970) have studied the rate coefficients of the
2s -> 2p, 3s, 3p, 3d, 4p transitions of NV at a temperature of
210,000 K. Their results agrée within the experimental uncertainty of
~20% for relative values and 58% for absolute values with the results
of Burke et al. (1966; and Taylor and Lewis (1955). There 1is also a
possibility of errors that woula tend to reduce the rate coefficients by

a factor of up to two.

Kunze and Johnston (1971) have studied .the rate coefficients of the
2s -> 2p, 3s, 3p, 34, 4s, 4p, 4d transitions of NV and O VI at several

temperatures. They estimate the maximum error in individual rate coef-

ficients to be a factor of two for excitation to the n = 2 and 3 levels,

and less than a factor of 2.5 for excitation to the n 4 levels. The

standard deviation of the experimental values from the theoretical ones
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of Bely (1966a, b) averaged over NV, O VI, and Ne VIII is found to be
less than 30% for excitation to the n =2 and 3 1levels, and less than
40% for excitation to the 4s level. The experimental rate coefficients
for excitation to the 4p and 4d 1levels are consistently ~48% below the

theoretical ones.

Some of the experimental rate coefficients are compared with the
theoretical values of Bely (1966a, b) in Fig.6.4, 6.5, and 6.6. Within
the experimental uncertainties, the results of Kunze and Johnston, and
Boland et al. support the theoretical rate coefficients obtained in the

Coulomb-Born approximation.

3. FIT OF THE DATA

Numerous empirical and semi-empirical formulas have been proposed to
represent electron impact excitation cross-—sections. For example,
Mewe (1972) proposes a four parameter formula and tabulates the parame-—
ters for groqnd state excitation of the lithium and other isoelectronic

sequences.

However, we will use modified forms of semi-empirical formulas pro-
posed by Drawin (1963, 1964, 19656). ‘There are several reasons for this
choice:

1. Drawin did an extensive review of the work done in the field
before proposing his formulas (Drawin, 1963, 1966).

2. His formulas have been found to be quite sﬁccessful in represent-

ing known cross-sections.
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3. Since his formulas have already been used for hydrogen, it will be
easier to compare the lithium-like cross-sections with the corresponding
hydrogenic values.

4. The parameters are not Eotally unknown since their hydrogenic
values are known.

5. The integrals arising from the integration of this cross-section
over a Maxwellian energy distribution to obtain the rate coefficient
have already been evaluated.

Different formulas are used for optically allowed and forbidden transi-

tions.

3.1. Optically allowed transitions

Drawin (1963, 1966) writes the cross-section for excitation of the

n' -> n transition by electron impact as

* !y
Spn (u) = 4TAZ ;:n u
‘n

gn'n (—u) ...(6.1)

where E,, is the threshold energy for the excitation of the n' -> n
transition in Rydbergs, W=E/Ey, is the energy of the impacting elec-
tron E in threshold units, fnu,n is the absorption oscillator strength
for the n' —> n transition, and a, is the Bohr radius. Drawin proposes

the functions

Gren (W) = X —%u:’:l- An (125 gu) eee(6.2)

for atoms, and
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O(v\‘n u.max - | 2
' - < <
= Kpig 2— An (12580, Uz U
= Bnin T2 ‘ ,6 , W2z Umax  ...(6.3)

for ions since the cross-section for excitation of ions is observed to
be finite at threshold. o, and @n-,\ are parameters that are adjusted
to the known data and Wy is the value of U at which gun(W) is maxi-
mum., The functions (6.2) and (6.3) are given in Fig.6.7 for o,, =1

and Brin = 1.

The actual behavior of the function gm\(lk‘) for ions is shown in
Fig.6.8, with curves a, b, and c. Drawin's function (6.3), given by
curve d, is seen to be a very crude approximation to the actual function
at low energies. To improve the situation, we introduce a third adjust-
able parameter &y, in the function Qua(W) to account for the finite
value of the cross-section at threshbld. Fig.6.9 suggests how ckn.n may
be introduced in eq.(6.2): <t>n.n is the value of U at which the cross-

section would be @ if U could take values less than 1. We thus have
#”.“ ‘ l l LI 3 (6. 4)
and the function 9,\.“(\&) becomes

un- '
9n'n(u) = “"'n —_‘liﬁq— Xn("‘?gpn‘n Ul), ...(6.5)

The function gu.(W) for atoms, eq.(6.2), which is @ at threshold, is

then a special case of eq.(6.5) with ¢“-“ = 1.
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For the sake of simplicity in writing down the equations, we now drop
the suffixes on the parameters o, Fn-n, and #n.n; however, it should
be understood that there is a different set of parameters for each tran—
sition. The cross—-section for excitation of the optically allowed tran-

sition n' -> n by electron impact can then be written as

Opon (W) = 41102 3(::";" « “;3’ jln (I-ZS(SM) cee(6.6)

h'n

vhere E, is in Rydbergs.

3.2. Forbidden transitions

Drawin (1963, 1964, 1966) has proposed the following expression for
the cross-section for electron impact excitation of the optically for-

bidden transition n' -> n in which no change of multiplicity occurs:

w-|

2
Un._,,,(u) = 4—“00 ann —F

. el (6.7)

An obvious generalization of this equation to cross-sections which are

finite at threshold is

(‘3"‘«-”\ (lL) = 4Traf an'n -M n"‘ﬂ . vss(6.8)

The parameter QQun shows large variations in value.

We wish to obtain a slowly varying parameter «w, from Qu, by fac-

toring out its highly varying part. For allowed transitions, one has

allowed ,
Qn‘n = £ Z (Xn'n. ves(6.9)
n'n

(2-1
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By looking at the values of Qu,, for the forbidden transitions of the
hydrogen atom calculated by Kingston and Lauer (1966a, b), and by anal-

ogy with eq.(6.9), we find that if, for forbidden transitions, we take

forbidden i n'\3
Q = £z (—n") Knin, .e.(6.10)
n'n

the parameter o, then varies slowly.

Dropping the suffixes on the parameters &, and ¢“‘n , Wwe can then
write the cross-section for electron impact excitation of the forbidden

transition n' -> n in which no change of multiplicity occurs as

2 /n 3 u -
GCpomn (W) = ATa, (_rf) E(xz uzd) .e.(6.11)
h'n

where E,, is in Rydbergs.

n

3.3. Fitting procedure

The adjustable parameters of’eqs.(6.6) and (6.11) are determined by
fitting the available data to these expressions with a least sguares
method (see Appendix D). The sum of the square of the relative differ-
ences between the actual and the fit values of the cross-sections is
minimized with respect to the fit parameters. The resulting minimiza-
tion conditions are non-linear equations in the parameters o, @,and 4>
for eq.(6.6), and ® and 4> for eq.(6.11). These equations are solved

by an iterative procedure.

(-3
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3.4. Fit parameters

The fit parameters obtained for the forbidden transitions 2s -> ns,
nd, nf and 2p -=> np of the ion N V are given in Fig.6.1¢ and 6.11. The
fit parameters of the allowed transitions 2s -> np and 2p -> ns, nd of

the ion N V are given in Fig.6.12, 6.13, and 6.14.

In general, a smooth variation of' the parameters is observed as n
increases. For forbidden transitions, ® has a highly regular behavior,
whereas the values of 4> are more scattered; this is especially evident
for those parameters which have been obtained from cross-sections extra-
polated with Bely's method. The parameters «, F, and <f for allowed
transitions also exhibit a regular behavior; however, the 2p -> nd par-

ameters show some degree of scattering.

Based on Fig.6.10 to 6.14, we can expect that, as a general rule, the
parameters within a spectral series will var9 smoothly as n changes.
Some of the parameters of the above transitions have accordingly been
corrected. Most of the parameters which need correction come from
cross—sections which have been obtained with Bely's extrapolation proce-
dure. In most cases, the parameters which have been obtained directly
from Bely's calculations need very little correction. However, it
should be noted that since Bely gives only a few cross—section values at
low values of U close to the threshold, some scattering of the parame-
ters is to be expected; this is due to the fact that a small variation

in the cross-sections will cause a large variation in the parameters.

The final values of the parameters of the ions C IV, NV, and O VI
after correction are given in Tables 6.1, 6.2, and 6.3 for forbidden

transitions, and in Tables 6.4, 6.5, and 6.6 for allowed transitions.
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Table 6.1 - Fit parameters for the collisional excitation of the

2s-ns, nd, nf and 2p»np forbidden transitions of the ion C IV.

2s5-ns 25->nd 2s-nf 2pnp

n ) a ¢ a ¢ ¢
3| 4.48 { 0.113 | 2.45 | 0.469 - 1.84 Oi??§
4 | 2.64 | 0.105 | 1.41 | 0.387 [ 0.247 | 0.393 | 1.52 06?3?
5 | 2.12 | 0.100 | 1.15 | 0.363 | 0.299 | 0.357 | 1.54 0(]{?
6| 1.8 OZ??§ 1.00 | 0.340 | 0.317 | 0.343 | 1.55 0(]??
71 1.66 0(??? 0.928 | 0.323 | 0.327 | 0.337 | 1.57 0(1??
8 | 1.55 0(??? 0.871 { 0.307 | 0.333 | 0.334 | 1.58 0(1;?
9 | 1.47 O(??g .0.830 | 0.293 | 0.337 | 0.333 | 1.59 0(]}?
0] 1.4 O(Z?; 0.800 | 0.280 | 0.339 | 0.332 | 1.60 oz?g;
| o137 | &3 L o777 | o272 | 0.381 | 0.332 | .61 79523
(-1) (-3)
12| 1.34 Osz? 0.759 | 0.265 | 0.342 | 0.332 | .62 | %23
130 13 | 078 1 07a7 | 0259 | 0.3aa | o3z | o163 | Ol
14| 129 [ %719 10,738 | 0.254 | 0.384 | 0.332 | 1.63 | %I
15 | tes | %713 | 0727 | o252 | 0.3s | 0332 | 1.es | %))

Power of ten is given in parenthesis
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Table 6.2 - Fit parameters for the collisional excitation of the

2s-»ns, nd, nf and 2p»np forbidden transitions of the ion N V.

2s-+ns 2s-nd 2s->nf 2p~np

n ¢ o ¢ a ¢ o ¢
0.964 0.720

3| ae | 005 1 ast foms | - - 182 | 078
a | 2.76 19821 1 140 | 0.352 | 0.274 | 0.366 | 1.48 | 0:73%
(-1) (-2)

51 2.20 19:7%2 1 193 | o.323 | 6.328 | 0.331 | 1.47 | ©;%9
(-1) -2)

0.699 | . 0.59

61 191 | %% Loser | 0.306 | 0.347 | 0321 | 1.7 | 02,
71 1.7a { 967V | 0.914 | 0.292 | 0.357 | 0.316 | 1.48 | 0;°8¢
(-1) (-2)

0.645 0.58

g | 1.61 | %55 | o.865 | 0.281 | 0.363 | 0.313 | 1.9 | ©5%
o | 153106241 5832 | 0.273 | 0.367 | 0.312 | 1.51 | 0;°8
(-1) |- (-2)

10| 1.46 ] 9500 | 9.809 | 0.266 | 0.371 | 0.312 | 1.52 | 0;%8
(-1) (-2)

0.582 0.58

1| 1.0 | 0590 | o.7e7 | 0.260 | 0.373 | 0.3 | 1usa | 77
121 1371 %564 0.775 | 0.255 | 0.37a | 0.311 | 1.54 | 0:58
(-1) (-2)

131 1.33 | 9550 g.765 | 0.252 | 0.375 | 0.311 | 1.54 | 0:°8
(-1) (-2)

1l 131 %549 | o.754 | 0.249 | 0.376 | 0.311 | 1.55 | 9:°8
(-1) (-2)

151 1.20 1 92530 ) 9.747 | 0.249 | 0.376 | 0.311 | 1.55 | 9;°8
(-1) (-2)

Power of ten is given in parenthesis
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Table 6.3 - Fit parameters for the collisional excitation of the

2s»ns, nd, nf and 2p»np forbidden transitions of the ion 0 VI.

2s-ns 2s-»nd 2s>nf 2p-np

n ) o ¢ o ¢ a ¢
0.748 0.700
3| aes | 0755 1 2se Joare | - 1.83 | 9799
a | 2.88 | 9:670 1 1 39 1 0.325 | 0.207 | 0.381 | 1.28 {0347
(-1) (-2)
5 2.26 | %98 1 1.12 1 0.302 | 0.328 | 0.300 | 1.42 | 9:970
(-1) (-3)

6 1 1.97 | 9933 1 5.063 | 0.283 | 0.368 | 0.302 | 1.41 | %3
(-1) (-3)
71 1.80 ] %49 | 0.896 | 0.269 | 0.378 | 0.299 | 1.41 | ©:317
(-1) _ (-3)

8| 1.67 | 9420 | o.ga8 | 0.255 | 0.385 | 0.207 | 1.41 | 0:2
(-1) (-3)

9 | 1.58 19370 | g.812 | 0.244 | 0.390 | 0.296 | 1.42 | 02
(-1) (-3)

10 ] 1.52 1 9323 1 9.789 | 0.237 | 0.302 | 0.295 | 1.44 | 0:2
(-1) (-3)

111 1,47 1 %273 1 9.768 | 0.232 | 0.396 | 0.295 | 1.45 | 0:2
(-1) (-3)

121 1,431 9235 | 9750 | 0.228 | 0.398 | 0.295 | 1.45 | 0:2
(-1) (-3)

131 1.20 | 9:290 | 744 | 0.226 | 0.399 | 0.2905 | 1.25 | 0:2
(-1) (-3)

1w 1371 9179 1 0.739 | 0.225 | 0.200 | 0.295 | 1.45 | 0:2
(-1) (-3)
15 | 1.35 | %175 | 0.728 | 0.224 | 0.401 {0205 | 1.45 | Op%,

Power of ten is given in parenthesis
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Table 6.4 - Fit parameters for the collisional excitation of the
2s-»np, 2p»ns, and Zp>nd allowed transitions of the ion C IV.

193

2s-+np 2p»ns 2p-+nd

n B ¢ o B 8 a : ¢

2 [0.919 | 5.71 | -0.493 | - - - - - .

3 10.511 | 1.41 | 0.473 | 0.413 | 2.26 | 0.252 | 0.478 | 4.53 | 0%
4 10.759 | 1.58 | 0.432 | 0.421 | 2.57 | 0.192 {0.372 |8.45 | -0.257
5 |0.858 | 1.61 | 0.427 | 0.429 | 2.64 | 0.180 | 0.528 | 6.44 | -0.158
6 |0.931 | 1.66 | 0.423 | 0.438 | 2.67 | 0.175 | 0.628 | 5.98 ‘OE?§§
7 | 113 [ 1.52 | 0.417 | 0.458 | 2.68 | 0.174 | 0.706 | 5.79 | -0.050
8 | 1.21 [ 1.54 | 0.413 [ 0.530 | 2.68 | 0.174 | 0.760 | 7.04 | -0.015
o | 1.22 | 1.56 | 0.am | 0.617 | 2.68 | 0.17a 0701 | 757 | o0.om
10| 1.23 | 1.55 | 0.470 | 0.650 | 2.68 | 0.174 | 0.808 | 8.00 | 0.031
11| 1.24 {1.53 | 0.410 | 0.655 | 2.68 | 0.174 | 0.822 | 8.36 0(???
12 | 1.25 | 1.54 | 0.410 | 0.665 | 2.68 | 0.174 | 0.83 |8.70 | %73
13 | 1.24 | 1.57 | 0.410 | 0.655 | 2.68 | 0.174 | 0.845 | 9.02 | 0.069
14| 1.25 | 1.54 | 0.410 | 0.655 | 2.68 | 0.174 | 0.854 | 9.28 | /733
15 | 1.25 | 1.55 | 0.410 | 0.655 | 2.68 | 0.174 | 0.860 | 9.47 | 0.082

Power of ten is given in

parenthesis
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Table 6.5 - Fit parameters for the collisional excitation of the 2s-»np, 2p-ns,
and 2p»nd allowed transitions of the ion N V.

2s-np ) 2p-ns 2p-»nd

2 10.932 | 6.07 | -0.533 - - - - - -

3]0.512 | 1.45 | 0.452 | 0.402 | 2.21 | 0.264 | 0.483 | 4.63 "Oif$§

41 0.710 | 1.70 | 0.374 | 0.426 | 2.67 | 0.177 | 0.611 | 5.05 | "7y

510.798 | 1.73 0.369 | 0.443 ]| 2.97 0.125 | 0.691 | 5.36 | -0.088

6 1 0.897 | 1.76 0.373 | 0.458 | 3.14 0.106 | 0.728 | 5.61 | -0.101

71 1.03 1.64 0.360 | 0.473 | 3.24 (<1) 0.753 | 5.81 | -0.110

81 1.13 1.66 0.355 | 0.486 | 3.30 (=1) 0.776 | 5.96 | -0.115

91 1.14 1.66 0.350 | 0.498 | 3.35 0.078 | 0.785 | 6.08 } -0.118

10 1 1.15 1.64 0.350 | 0.509 | 3.39 0.074 | 0.790 | 6.19 | -0.118

11 1 1.15 1.66 0.350 | 0.513 | 3.39 0.070 { 0.795 | 6.24 } -0.118

12 1176 | 1.66 | 0.350 | 0.517 | 3.39 | %% | o.797 | 6.29 | -0.118

13 {115 | 1.66 | 0.350 | 0.522 | 3.39 | %507 | 0.799 | 6.32 | -0.118

14 1 1.16 1.66 0.350 | 0.524 | 3.39 0.065 { 0.798 { 6.34 | -0.118

151 1.16 1.66 0.350 | 0.524 | 3.39 0.064 { 0.798 | 6.34 | -0.118

Power of ten is given in parenthesis
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Table 6.6 - Fit parameters for the collisional excitation of the 2s»np, 2p-»ns,
and 2p»nd allowed transitions of the jon 0 VI.

25-p 2p+ns 2p->nd

2 10.934 | 6.49 | -0.550 - - - - - -

3 |0.521 | 1.48 | 0.425 | 0.380 | 2.24 | 0.259 | 0.477 | 4.91 | ;%)

4 10,671 | 1.81 0.336 | 0.436 | 2.78 0.155 | 0.530 | 2.45 | -1.56

5 10.765 | 1.84 0.333 | 0.462 | 3.28 (-1) 0.583 | 2.82 | -0.917

6 | 0.851 | 1.88 0.331 | 0.453 | 3.68 (-1) 0.645 | 5.75 | -0.192

7 10.986 | 1.74 0.325 | 0.432 | 4.06 (-2) 0.721 | 5.88 | -0.116

8 | 1.05 1.76 0.320 | 0.419 | 4.37 | -0.014 | 0.833 { 5.11 | -0.068

o | 107 | 177 | 0.:16 | 0.413 | ase | "0 | o0.888 | 472 | TO0DS

10 | 1.08 [1.77 | 0.312 | 0.408 | 4.75 | -0.045 | 0.935 | 4.45 ‘Ozf$§

11 |1 1.09 1.75 0.312 | 0.405 | 4.90 | -0.056 | 0.964 | 4.30 § -0.010

-0.157
12 1 1.09 1.78 0.312 | 0.404 | 4.97 (-1) 0.982 | 4.20 (-2)

13 11.10 | 1.75 | 0.312 | 0.404 | 5.00 | -0.073 | 0.988 | 4.15 | 024!

14 11.10 [1.75 | 0.312 | 0.404 | 5.01 | -0.077 | 0.989 | 4.13 | 0476

15 (1.0 [ 1.7 | 0.312 | 0.404 | 5.01 | "%/0% fo.988 | 4.13 | 0.005

Power of ten is given in parenthesis
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4. EXTRAPOLATION OF THE FIT PARAMETERS

The simplest extrapolation procedure possible is to assume constant
values of the parameters for all unknown allowed or forbidden transi-
tions. Unfortunately, the parameters which are known show substantial
variations and such an extrapolation procedure will he far less accuraﬁe
than one based on the known trends of the parameters at low values of n'
and on the corresponding hydrogenic values. We carry out the extrapola-
tion of the parameters of N V from which those of C IV and O VI can be

obtained.

4.1. Constraints on the parameters

The fact that the excitation cross-section must be positive

Span (R) Z0 el (6.12)

imposes certain conditions on the parameters which restrict their range
of values. These conditions are obtained by demanding that each parame-
ter be allowed only such values that will satisfy eq.(6.12). From equa-—

tions (6.6) and (6.11), we thus have the conditions

X >0
u-p=o
An (125 (3“)20 el (6.13)

or
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X zo

C’) € umin

|
D ——
(S 7125 Umia .e.(6.14)

where W,;, is the minimum value of U. The smallest possible value of U

is 1. We thus obtain the constraints

X >0
$ < |
‘S>/ 0.8 ... (6.15)

for optically allowed and forbidden transitions.

The value of U at which the cross-section is a maximum, W,, , is

given by the relation

An (/.zs'/s Umax) = ZM* "24’ .o e (5.16)
max —

for allowed transitions and

Umqy = 274 eee (6.17)

for forbidden transitions. The value of Wmay is not known exactly for

every transition. However, it is usually small, 1less than ~5. It
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should also be noted that values of WUwm,, less than 1 are also possible,
as can be seen from curve a in Fig.6.8. Relation (6.16) or (6.17) <can
thus be used to establish whether a set of parameters gives a reasonable

value of (A'm.

4.2. Allowed transitions

4.2.a. 4n 31 transitions

The an=1s ->p, p->s, and p-> d transitions can be extrapo-
lated with reasonable accuracy, due to the work of Davis and
Morin (1979) on the 5p -> 6s, 6s => 7p, 6p -> 7s, and 6p -> 7d transi-
tions of N V. 1In Fig.6.12, 6.13, and 6.14, we show the position of the
parameters of these transitions in relation to the parameters of the
transitions from the 2s and 2p states of N V. We also show possible
extrapolation curves for the an =1 s ->p, p->sand p -> d transi-
tions. The corresponding values of the parameters are given in Tab.6.7.
An estimate of the errors in these parameters and a discussion of theif

effect on the cross-sections is given in Section 4.5 of this Chapter.

To obtain estimates of the parameters of the an3 2s ->p, p-> s,
and p -> 4 transitions, the following extrapolation procedure is used.
We take as example the extrapolation of the °(n'5-vnp parameters. We
assume that these parameters vary continuously as n' and n are varied.
We then take the curves 0(,_5_,,“, and ®&u,., as envelopes of a family of
curves ck,\\s_»,\? and ™y, @S shown in Fig.6.15. The intersection of
the two sets of curves at integer values of n gives estimates of the
parameters Xps.pnp - This extrapolation procedure can be justified by

the fact that for all allowed transitions of hydrogen, ® =1, and it
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Table 6.8 - Extrapolated parameters for the collisional excitation
of the m»2 s»p, p»s, and p»d allowed transitions of the ion N V.

n. n= n= n= n= nz n. n= n= n= n= n:
n+2In'+3In'+4in'+5In'+6 n'+2{n'+3in'+4n'+5n'+6
ol23] 0.7] 0.8] 0.9] 1.0} 1 3] 0.5} 0.5} 0.5] 0.5] 0.5
812311.35]1.35{1.35|1.35{1.35 41 0.5} 0.5} 0.5| 0.5} 0.5
[0}
‘j 31 0.4 0.4} 0.4] 0.4} 0.4 510.55)0.55}0.55{0.55]0.55
o! 41 0.5} 0.4} 0.410.4]0.4 561 0.6] 0.6| 0.6 0.6} 0.5
251 0.5 0.5} 0.5] 0.5] 0.5 3] 2 12.51 3 3 3
ol23]1 0.6} 0.7] 0.71 0.7 0.7 4{ 2 2 l2.5]2.5]| 2.5
3l 2.5y 3} 3] 31 3 gl5l1.50 2| 2| 2 2
4] 2| 2 |2.5]2.5|2.5 6f 11 21 21 21 2
¢
o
gls]l 21 2| 21 21 2 27 11 1] 2| 21 2
6] 11 11 2] 21| 2 31 0.2} 0.210.2) 0.2] 0.2
2’_3711122 41 0.3] 0.21 0.2} 0.2} 0.2
31 0.3} 0.3/ 0.3/ 0.3]0.3 5{0.3] 0.310.3] 0.310.3
410.410.4]0.4]|0.4]0.4 6| 6] 0.410.3]0.3]/0.310.3
6| 5{0.4510.45]0.450.45|0.45 71 0.4} 0.4] 0.3} 0.3} 0.3
fg 0.5} 0.5| 0.5] 0.5} 0.5 8] 0.4} 0.4/0.4]0.4]0.4
29 (0.55 [0.55 {0.55 {0.55 |0.55 391 0.5]| 0.4 0.4] 0.4] 0.4




201

o
o
2S*W1P
o
J
8 S
: an=
-
(@]
[+,
o‘-
£ an=4
[4
Yo
« 00
o
LLIQ
W
Ei An"s
el
=51
] an=2
(=]
[7e]
o
()
n
o‘—
o
-
o ‘ an=|
(o]
L]
©.00  4.00  6.00  8.00  10.00  12.00  14.00  15.00

PRINCIPAL QUANTUM NUMBER.,N

FIGURE 6.15 - EXTRAPOLATION OF THE PARAMETER Olny FOR
THE n'S>np TRANSITIONS OF N V,



202
thus seems reasonable to expect that for all allowed transitions of N V,
P.4 ¢ ¢ £ 1.2, as is observed for the curves “2’”"P and Kan=, - The
sets of parameters for the An3»2 s ->p, p->s, and p -> 4d transi-

tions shown in Tab.6.8 are obtained in this manner.

The parameters of the other allowed transitions from 4, £, and higher
L -value states are difficult to extrapolate, since no data are availa-
ble for these transitions in lithium-like ions. These parameters will
be estimated by taking into account the behavior of the parameters of
s->p, P->s, and p -> d transitions of N V and the behavior of the
corresponding hydrogen parameters which can be obtained from the works

of McCoyd and Milford (1963) and Kingston and Lauer (1966a, b).

i. Behavior of «

The value of X for hydrogen is found to be « = 1. For the s -> p,
p -> s, and p => d transitions o£f NV, 0.4 ¢ X € 1.2, with an average
value of ~@.6., Since & is constant for hydrogen, this suggests that
&« may be expected to be relatively constant for N V. Consequently, we
take rough averages of the values of ®™an=y, Ranzzsr ... Of the s -> p,
p -> s, and p-> d transitions, and use these for all allowed transi-
tions with A'3d and &0 =+1., ‘The values of « obtained in this way
are found to increase slightly with n, as i§ also the case for the tran-
sitions from thé 2s and 2p states. The values of &« for the angz 1,

2'7 d transitions are given in Tab.6.9.

ii. Behavior of @
Although the numerical values of F are different for hydrogen and
N V, we can however expect the overall behavior of these parameters to

be similar. 1In hydrogen, for al = 11,
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1. for constant n' and K', F increases as an increases;

2. for constant n' and an, (3 increases as L' increases;

3. for constant £' and an, ? decreases as n' increases;
(Rule 1)', The change in ‘3 is found to be quite rapid at low values of
the variables, but becomes very small as n', £, and an increase (Rule
2). This is observed for Pﬁ‘ and ﬁ"' of hydrogen. However, the hydro-
gen values of {3 have been calculated only for small An . But Rule 2
can also be inferred for @M since it holds for the 2s -> np and
2p => ns, nd transitions of N V. We also find that @Al:a is slightly
greater than @Aﬂ:' ; the difference between the two is less than a fac-

tor of two in most cases (Rule 3).

As can be seen from Fig.6.13 and Tab.6.8, the values of g for the
s->p, P—->s, and p-> d transitions of N V obey Rules 1, 2, and 3.
We thus use these rules to estimate the values of ?, for all an>1,
L'2 4 allowed transitions. Assuming ?Ag =1 & @ag=y and
ﬁ.«‘:d &Fx'=§ &~ +¢» , and starting from the values of e for the s -> p,
p->s, and p->d tr'ansitions, the parameters shown in Tab.6.9 are

obtained.

iii. Behavior of ¢

The parameter c}), for neutral hydrogen, has the value 4: = 1 since
the cross—section 1is @ at threshold. For the excitation of positive
ions, values of ¢ are difficult to obtain since 4) only affects the

excitation cross—-sections at low values of U.

We thus have to estimate the parameters <‘> for the an31, £'2 4

allowed transitions from the behavior of 4: for the s => p, p -—> s, and
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p —> d transitions. For these transitions, C} is relatively constant
and, in most cases, 8.2 < 4: £ f.6. However, larger variations in the
values of Ap are observed for the transitions from the low-lying 2s and
2p states. The estimated values of ¢ are restricted to the range
g.2 ¢ c,; £ @.6 and are based on a rough average of the parameters for
the s -> p, p > S, and p -> d transitions. The behavior observed in
Fig.6.14 is also taken into account. The resulting parameters are given

in Tab.6.9.

4.2.b. An = @ transitions

Very 1little data are available on transitions of the kind
nd' -=> n2'*1 in which only .the angular momentum of the bound electron
changes by an amount AL = l: Bely (1966a) has looked at the 2s -> 2p
transiticgn and Burke et al. (1966), the 3s -> 3p and 3p -> 3d transi-
tions. As is evident from Fig.6.12, 6.13, and 5.14, the behavior of the
parameters of the 2s -> 2p transition is very different from that of the
An » 1 transitions 2s -> np. As will be seen later on, this is a pec-

uliarity of an = ¢ transitions,

Bely (1966a) states that the Coulomb-Born approximation gives results
for the 2s -> 2p transition which are accurate to within a few percents.
Tully and Petrini (1974) £ind that the Born and the Coulomb-Born appros-
imations tend to the same results at high kinetic energy of the incident
electron. This suggests that we use the simpler Born approximation for
AW = @ transitions to obtain estimates of the parameters & and @;
values of 4> can then be estimated from the cross-sections given by

Bely (1966a) and Burke et .al. (1965).
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The excitation cross-section, in the Born approximation, has the form

(Massey and Burhop, 1952, p.148)

4
4T m € 2 E
Gnl,_;”(E)Zh—k':—E-—— I?—nl_,n‘ O—i—/(,n (4‘E’l:h) 0..(6-21)
where |Z,.,| is the mean dipole length on the 2z axis for the n' -> n

transition and the other symbols have their usual meaning. One has
, . A
zh'_qn = s'\."nl 2 q.n dc 0.0(6.22)

where 1(—,‘, and "-Fn are the wave functions of the initial and final states
respectively; dt is a volume element. Drawin (1963) puts

it 2
| Z2pon 1> = =220 g e (6.23)
Enln .

where ‘S’,\._,n is the absorption oscillator strength of the n' -> n tran-
sition and E,, 1is in Rydbergs. Using eq.(6.23) in eq.(6.21) and
expressing the energy of the incident electron in threshold units, we

get

Opiy, (0) = 4TTQ. St l"”.“) .

eeo(h.24
En'i U ( )

By comparing this equation with eq.(5.6), we obtain the parameters
=1

3.2

o
]
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$ =o. ...(6.25)

As can be seen in Fig.6.16 and 6.17, these parameters underestimate
the actual cross-section at low values of U. However, using ¢: = -1
gives a good fit to the 2s -> 2p and 3s -> 3p cross-sections. The fit
for the 3p -> 3d transition is within a factor of 1.5 of the results of
Burke et al. (1966) at low and intermediate values of U. We will thus

use the set of parameters

X =1

F,=3-Z

¢=—" .0-(6.26)
for An = 0 allowed transitions.

4.3. Optically forbidden transitions

4.3.a. 4&n3> 1] transitions

i. Extrapolation of «

The parameters &« are estimated by comparing their 1lithium-like
values with the ones obtained from the cross-sections of the forbidden
transitions of hydrogen calculated by Kingston and Lauer (1966a, b) for

&1 =1 and 2. In Fig.6.18 to 6.20, the values of & for hydrogen are
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plotted as a function of n for most of the an = 1 forbidden transitions

from the s, p, and d states.

Several characteristic behaviors of the parameter ® emerge from this
comparison. Broadly speaking, for constant An and n', & is greatest
for the sl = 2 transition; the othe; parameters are ordered as follows:
Nag=z 7 Xateo 7 Kagez > X0 ,++. However, as 4n and n' increase,
K al=2 approaches the value of ™ .o We also observe that
Kafeo K Kalyo» If al and n' are constant, the values of ® decrease
as An increases. This decrease is particularly drastic for very low
values of An, but as an increases, & approaches a constant value as
is observed in Fig.6.1¢ for the 2s -> ns, nd, nf and 2p -> np transi-
tions of N V. For constant A4 and An, o tends to a more or less con-
stant value as n' increases; however, it should be noted that & is lar-

ger for the first few values of n'.

In Tab.6.14, the known values of & for the ions C IV, NV, and O VI
are compared with the .corresponding hydrogen values. We observe that
for a given transition, the lithium-like and hydrogen values of & are
approximately equal. Furthermore, the hydrogen parameter is seen to be
the 1limiting value of the C IV, NV, and O VI parameters, as 2
incréases. The values of ® for NV can thus be estimated by taking
rough averages of the hydrogen values. The resulting parameters are

given in Tab.6.11.
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Table 6.10 - Comparison of the fit parameters o for the collisional
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excitation of some forbidden transitions of the ion N V and of Hydrogen.

a/aH
Tan- ol ocw | NV | ovI| H W |nNvV VI
2s+3s | 0.560 | 0.576 | 0.585 | 0.624 | 0.90 | 0.92 | 0.94
2s+4s | 0.330 | 0.345 | 0.355 | 0.388 | 0.85 | 0.89 | 0.92
2s>3d | 1.53 | 1.57 | 1.59 | 1.97 [o0.78 | 0.80 | 0.81
2s+4d | 0.881 | 0.875 | 0.869 | 0.788 | 1.12 | 1.11 | 1.10
25.4¢ | 0.216 | 0.240 | 0.260 | 0.412 | 0.53 | 0.58 .63
2p~3p | 0.690 | 0.683 | 0.686 | 0.684 | 1.01 | 1.00 | 1.00
2p+4p | 0.570 | 0.555 | 0.540 | 0.428 | 1.33 | 1.30 | 1.26
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ii. Extrapolation of 4’
Since no hydrogen values are available for this parameter, the values
of 4> for NV will be estimated by using the behaviors exhibited in
Fig.6.11 by the parameters of the 2s -> ns, nd, nf and 2p -> np transi-

tions of N V.

The parameter 4’9 is very small for the ol = @ forbidden transitions
from the ground state; as al increases, 4> also increases, but it seems
to tend to a constant value. 'The value of 4) for the 2p -> np transi-
tions is also observed to be very small, being of the order #. Based on
these considerations, the following parameters will be used for anz1

forbidden transitions:
4)4£=o : O.0
¢A.2 =2 = O- 25
CFA.Q =3 = 0.3

4)01 24 = 0.4, .ee(6.27)

No data are available at all on the af< @ forbidden transitions.
In the case of allowed transitions, we observe that the values of ¢ for
A -> g' transitions are about half the values of the corresponding

L' > £ transitions. Accordingly, we will use
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¢A.Q=—2 = 0.l

Pore-s = 0.2 ' ... (6.28)

as an estimate of the parameters of the anz1 »4< g forbidden tran-

sitions.

4.3.b. An = @ transitions

The work of Burke (1966) on the 3s -> 3d transition of N V provides
the only data available on an= @ forbidden transitions. The parame-
ters of this transition are ® = 9,138 and <|> = -f.342. The 3s -> 3d
cross-section is found to be about twenty times smaller than the
3s -> 3p one. This is surprising, especially since the af = 2 forbid-
den transitions dominate all other transitions in the &n321 case.
However, the Aw = @ transitions are dominated by the optically allowed
transitions (Bely and Van Regemorter, 1978). We use this fact to esti-

mate the parameters ® of An= @ forbidden transitions.

The 3s -> 3p excitation cross-section is proportional to

K' - 4-Traf
35> 3p -

E3§,3ﬁ ~£ss->3p 0(35_‘3? .- (6.29)

and the 3s -> 3d cross—-section to

| 4Tas
K'sssad = —z2= Kzs,3d. ... (6.30)

Eséad

Here E 35,3, and E 5 34 are in Rydbergs. The ratio of eq.(6.39) to
»3p >

eq.(6.29) for NV is found to be
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K‘ss—»ad
K|3S—» 3p

= 0.2, . eee(6.31)

We find that for a nf -> n 4%1 transition, the absorption oscillator
strengths show large variations as 4' increases. For example, the
184 > 19 1'+1 transitions in N V have the following oscillator

strengths (Lindggrd and Nielsen, 1977):

f«)s—wop = 1.4
pr—uod = 0.21

}lod-ﬂof’ = 0.04¢(

&mf.—)wg = 0.0013, ... (6.32)
This causes large variations in the values of K' for allowed transitions
which are not present in the values of K' for forbidden transitions
since the latter has no quantity equivalent to the former's oscillator
strenéth. If the optically allowed transitions are to dominate the for-
bidden transitions in the AN = @ case, the values of & for An = ¢
forbidden transitions will have to exhibit variations of the kind seen

in the oscillator strengths (6.32).

One way of achieving this is to use the ratio

K'pt? > nt 22"+, A~ 0.2 0.2 ve.(6.33)

—

'
K nt'=»nt'sy,
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for all an = 0 transitions. Using the definitions of K' and the fact

that Eppy noggt 2 E e , we obtain

> nl'v;

Xne'y L # L+ A 0.2% 0.2 veo(6.34)
5—n£‘-—>n,('+| dnl')h,e"l’l

and since (eq.6.26), we finally get

nehyng'yy ¥

Kpg', b2t = (0.2 20.2) Fop g0, . .. (6.35)

This relation provides crude estimates of the parameters o for an= 0

forbidden transitions. These are given in Tab.6.12.

We estimate the parameters ¢ as follows: since 4)= —-0.342 for the
3s -> 3d transition, and since 4: ~ -1 for all an = 0 allowed transi-
tions, an average value of 4> v ~-f,5 1is used for all an = g forbidden

transitions.

The parameters for the transitions for the 2s and 2p states of the
ions C IV and O VI are known and are given in Tables 6.1 to 6.6. The
parameters for all the other transitions for which no data are availa-
ble, are obtained from the parameters of the ion N V by the following

method.

The quantity z* GCuen(W) 1is independent of Z for hydrogenic ions
in the Born approximation (Tully, 1973). Tully and Petrini (1974) men-

tion that at sufficiently high impact energies, the Coulomb-Born approx—



Table 6.12 - Extrapolated values of the parameter o« for the collisional
excitation of the m=0 forbidden transitions of the ion N V.

Transition Parameter
4s54d 0.1
4s54f 0.1
Aps4f 0.02
55+5d 0.1
5555 0.1
5s+5¢g 0.1
5p>5f 0.03
5p+5g 0.03
5d»5g 0.001
bs+6d 0.2
656 0.2
65569 0.2
65+6h 0.2
6p>6f 0.03
6p-+6g 0.03
6p-+6h 0.03
6d->6g 0.001
6d-+6h 0.001
6f->6h 0.0002

220
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imation reduces to the Born approximation: for the 2s -> np transitions
in lithium-like ions, the two approximations differ by less than 10% for
U 2 8. Since the excited states of the lithium-like ions are closely
hydrogenic, we can expect that the quantity 2Z*G,_,.(u) will also be

approximately independent of Z for these ions.

The cross-section for electron impact excitation of allowed transi-

tions is given by eq.(6.6), viz.

Sya () = 4TA2 a‘é-zn « u;:l? An (125 gu)

A'n

where Ewn is in Rydbergs. For large U, the Coulomb-Born approximation

applies and we then have

(= S(?:)
4 = 4 z teon
Z 6nl--\nq (u) & Z’ 4Trao {—E"\_(-;—)-}—z‘
n'n
.25
x Oz £n (25 pa &) . ... (6.36)

28

(2)

Given that Z‘ S) (W) is approximately independent of the ion con-

non
sidered, we get
(NY)
5 B car L (125 i 0
=
~ Z_4é% 0<;:,1n (/.25(32 u). ee e (6.37)
h'n

Since éi‘ is relatively independent of Z, and since £n (125 Pz LL) is
a slowly varying function of IBZ, we can drop the terms containing fgz

out of eq.(6.37) and write
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2

i
@ otien [g8 XD
O(n’n - (_2-' f(z) (NY) nn . ess (6.38)
'\'—’n Eﬂ’ﬂ

For hydrogenic ions, the oscillator strength is independent of Z and, as

a first approximation, we can use for lithium-like ions

(=) (NX)
{ X :{’,,._,,‘ ... (6.39)

n'-—n

to simplify the calculations. We thus obtain

() sv e @\
Ky X <-2-> (—E_"(—:—m— Aty . .o (6.40)
n'n

In Tab.6.13, we compare the results obtained from egs.(6.38) and
(6.40) for the 2s -> 5p transition with the values obtained from
Bely's (1966a) calculations. Although eq.(6.44) is more approximate
than eq.(6.38), it g@ves better results. This shows the approximate

nature of this method. We will Athus use

(CEH) E em
nl
n‘n k 2. 44 (N;) dn'n 000(6-41)

n‘n

and

a 2
(01) ~ { (no'n) D((NI)
An 2. 01 ENI) n'n ees (6.42)

n'n

to calculate the values of o for the allowed and forbidden transitions

of the ions C IV and O VI for which no data are available.
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Table 6.13 - Value of the parameter o for the 2s»5p transition
of C IV and 0 VI as calculated from various equations.

C IV NV 0Vl

E . 4.09 6.18 8.69
Rydbergs | Rydbergs { Rydbergs

f . 0.0290 0.0322 0.0343

n'-n
. 0.858 0.798 0.765
Eq.(6.38)| 0.947 - 0.714

Eq.(6.40)f 0.853 - . 0.761




224

The values of the parameters B and ¢ for these transitions will be
'éet equal to the parameters.of the corresponding transitions in N V.
There are several reasons which justify this choice of parameters: The
extrapolated values of F and cﬁ for N V have large uncertainties, and
since the known values of these parameters for the ions C IV, N V and
O VI are all quite close, we can expect that the unknown parameters of
C IV and O VI will fall within the range of uncertainty associated with
the parameters of N V,  Since ‘¢ affects the cross-section only at low
values of U, and since the cross-section depends on the natural logar—
ithm of F, the cross-section will be less affected by large uncertain-
ties in @ and ¢> than by corresponding uncertainties in &« . ‘This is

more fully discussed in the following Section.

4.5. Estimated errors in the extrapolated parameters

The errors in the extrapolated parameters are difficult to evaluate.
Reasonable estimates of the uncertainties associated with them can how-

ever be obtained and are given below.

a. The error in the extrapoléted values of ¥ is estimated to be less
than a factor of two in most cases, based on the fact that the parame-
ters & show little variation and that hydrogen values are used as
guidelines in the extrapolation procedure. Since & has a constant
value for the allowed transitions of hydrogen, the allowed transitioa-
parameters can be expected to be more accurate than the forbidden tran-
sition parameters. It should also be noted that this error estimate
does not hold for An = @ forbidden transitions; these, as explained

previously, have large uncertainties which cannot be estimated. How-
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ever, the overall effect of these large errors is negligible since
An = g transitions are strongly dominated by the optically allowed

transitions.

b. An error of t4.5 is assigned to <;> Since in most cases,
0 ¢ ¢ £1 for 4Anzl transitions, such an error estimate is reasona-
ble. For An = § transitions, -1 ¢ c}> & 0, and again, the error esti-

mate is compatible with the range of values of <‘>.

c. The error in the extrapolated values of ‘S is very difficult to
estimate due to the wide range of values which the parameter can take.
However, we estimate this error to be a factor of about four in most
cases. Since the ﬁinimm value of F is 0.8, this error estimate sets
the regular range of @ to 0.8 £ ? £ 12.8, with a geometric mean of

3.2, the value of F obtained from the Born approximation.

The error estimates in the extrapolated parameters may be summarized

as follows:

A6 = oS .ee(6.43)
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‘The effect of these uncertainties on the cross-sections depends on the
parameter considered. The following relations are derived from

egs.(6.6) and (6.11):

AS  AX

o T TX

AS _ l 28

S An(12Spu) g

5 ad

S = Tu-g .e.(6.44)

We see that the error in the parameter & dominates the error in the
cross—-section because the errors in the parameters F and CfJ are
decreased by a factor An (/.,zs,su) and (U- 4>) respectively. This is
due to the fact that & is a factor which determines the magnitude of
the cross—-section whereas ¢ is related to the value of the cross-sec—

tion at threshold, and é to the width of the peak observed in the

cross—section.

5. CROSS—-SECTIONS INVOLVING AVERAGE STATES

The cross-sections of average states can be obtained from the indivi-
dual cross-sections with the summation rules (Moiseiwitsch and

Smith, 1968)

Sppran (B) = '(Z Gyt —>mg (U) . (6.45)

and
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Wnia!
Or‘l'—yn(l/l) = ;m’% an,?'—-)n (U) ) oo (6.46)

where Wpygp and Wy are the statistical weights of levels n'2' and n'

respectively. With Wep=2(24'+)) and wy= n'z, we get

2! '
Chisn (W) = % -—;‘-,-Zﬂ- Spipon (1), ... (6.47)

5.1. n'&' > n transitions
The cross-sections of these transitions are calculated from a simpli-
fied form of eq.(6.45):

L'+s
Ot -on (1) 2 )EU Shwryr ng (W) . ... (5.48)

This simplification is possible because of the following observed behav-

iors of the individual ‘cross-sections.

Since the af < 8 cross-sections are very much smaller than the
AL 2 @ cross-sections, they can be deleted from the sum (6.45). We
further neglect the ad » 6 cross-sections due to the following charac-
teristics of af{ > @ transitions:

i. large an: For large An transitions, the n'{' -> n cross-sec-
tions are dominated by the n'®' -> n{ cross-sections with very low
positive values of af. This is due to the fact that at low valueé of
U, the average cross-section is dominated by the Af = 2 cross-section,
and at high values of U, by the AL = 1 cross-section due to its logar-

ithmic dependence on U.
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ii, small An: The average cross-section 1is still dominated by the

Al = 2 cross-section at low values of U and by the. af =1 cross-sec-

tion at high values of U. However, the contribution from cross—sections
with higher positive values of al increases.

iii. AN =0: The average cross-section is dominated by the A{ =1

allowed transition; the contributions of forbidden transitions are

almost negligible.

The cross-sections obtained for the n'{' -> n transitions by applying
the summation rule (6.48) are fitted to eqg.(6.6). The resulting sets of
parameters for the transitions used in this work are then averaged as
follows:

i. &n =@ transitions, ns -> n'<j.>,|> : The average of the availa-

ble sets of parameters gives

F,: 3.S 0.0

¢= -1.0% 0.0 ves(6.49)

where the errors given are the standard deviations of the averaged data.
ii. an 21 transitions, n'A'-> ndL21d> and n'L'-> n: The same
set of parameters 1is obtained for the n'L' -> ndL21> and n'L'->n

transitions because the n'AL' -> ns transition contributes very little to

the n' L' => n cross-section.
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Almost all values of p are found to 1lie within the range

1.40 < P £ 1.50; the average value of F is

F=:.4s:to. 06 ves(6.50)

where the error is the standard deviation of the data. The values of
and ? show more variation; however, since a more or less constant value
of F, is obtained for these transitions, constant values of & and cb
should also be expected. We thus average those values of « and 4> for
which the corresponding value of F lies within one standard deviation
of the average (6.50): 1.39 < (5 ¢ 1.51. We obtain

4 1.S * 0.4

¢

]

!

-R.7+£0.5 ...(6.51)

where the errors are the standard deviations of the data.

In conclusion, the following sets of parameters are used for the
n' L' -> n transitions:

i. An = @ transitions, ns => n{42!)

X =19
‘s= 3.5
¢=-lo vea(6.52)

ii. Aan > 1 transitions, n' &' -> n<4>1> and n'L' -> n
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(.85 :
ﬁ = 1.4S8

$=-21 vee(6.53)

5.2. W' -> n transitions

Using the summation rule (6.46), viz.

and eq.(6.6) to represent the cross-section for the n'f' -> n transi-

tion, we get

w 'I"n‘ lan
6"._” (u) = 4T oS [' 'U' l,_‘. _)D( /(n(l zS(Bu)”_(g 54)

where «, F, and d> are constants given by relations (6.53) and E,u.’“
is in Rydbergs. Since the values of «, 15 , and c} are approximate, we
can put Em.’n independent of L' to simplify the evaluation of the quan-

tity in square brackets: £.,,,. ~E . Then we have
no'yn n'n

(A)n’,(' fh'!'-—) n A,
=z R
x, wn‘ Eﬂ“', n . w“ E” m

Z Waig! J('

n'J.'->n L o.-(6055)

Since (see Section 4 of Chapter IV)
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% wnltl fn'l'—;n ﬁ wnl {’nl_._n

eq. (6.55) becomes

wh’l' j-ﬂ'.l.. - N A fn'-’n (6 56)
1 - T 5 » oo e .
q W En‘.!.',n En%“

To a good approximation, the equation

_ 2 fon . u-
Opan (W) = 4Tdo E"',f" X uj) An (/.Zslgu) ...(6.57)

n'n

where

X=1.5
F: 1.4S
d) = —-2.7 ee.(6.58)

thus holds for the n' -> n transitions.

5.3. nKt'>1> > ns transitions
A few transitions of this kind occur in the configuration of levels
used in this work. Summing over the final states and averaging over the

initial states (Moiseiwitsch and Smith, 1968), we obtain the summation

rule

- ‘ Whng!
O ey s ns () jés Whceor Shptans (W, ... (6.59)
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We use edq.(6.59) to add the

individual cross—sections and we fit the
resulting

data to eq.(6.6).

The following set of parameters approxi-

mates the n' {£'> 1) -> ns cross-sections:

o = 0.03

¥
b =o0.2,

1\

.S

"

... (6.60)

As expected for AL < @ transitions, « is very small.

6. COLLISIONAL EXCITATION RATE COEFFICIENTS

The rate coefficient for collisional

excitation of the n' -> n tran-
sition by electron impact is given by (Drawin, 1965)

Con (T) ':-fv Spion () - Fv) dar

ceo(6.61) (2

where v is the velocity and £(v)

the velocity distribution of the inci-
dent electrons.

Here n' and n represent all the quantum numbers of the
states considered.

Using the Maxwellian velocity distribution

dne

Ne

442 - Tia
= o= : dqr—
S d T (2kT/m)>"?

eeo(6.62) (R}

and expressing egs.(6.61) and (A.62) in terms of the kinetic energy E of
the incident electron, we obtain

€

; 34
Coss, [T)zﬁ%(f?) /EC)‘,,,_MCE)EC deg. .. (6.63) (-1t
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With threshold energy units W=E/E.,, eq.(6.63) becomes

% En
n'n
C n'-n CT) ﬂ-ka T3/2

En'nu_
co - Tk¥
«§ O lt) € udi, cer (6.64)
We write the cross-section as
O, (W) = 41T 05 5‘5 e g,,n u) .e.(6.65)

A'n

where

gﬂ'—"n = JLn

'=n
Gnw (u) = O —M—_aii"—"l-/én (125 /A,,,,, M) .o o (6.66)

for allowed transitioné, and

Frn = ()

gn'n (u) = &y M—MZ_"'" ‘ .o  (6.67)

for forbidden transitions. With E,, in Rydbergs and T in K, we have

3/2 n'—sn

Cron (7) = &45-—517"—_':’—"— D

(6) em®s—! ...(5.68)

where



Dy (8) = J” G (w) 1€ "“dus

- E n

In particular, we define the functions

Dusn (8) = Da (, 8,$586)

_ u'é -6t
= & f o An (/.zS’/au) € " du
for allowed transitions, and

Dacsn (8) = Dy (¢, $58)

o
w—-¢ —Bu
= « ] “w-e
Tu € du
for forbidden transitions.

7. EVALUATION OF THE INTEGRALS

We first evaluate the simpler integral D;(o(,c};e) .

stitution x=8U in eq.(5.72), we obtain the integral
D (x,456) = _éﬁ_/:(,, 0 ) e dx

which is easily evaluated:

234
eee (6.69)

oo (6.70)

ees(6.71)

ee s (6.72)

With the sub~

eee(6.73)
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Dy, ¢ ;6) = ~‘g—[ e’ - $0E, (0)], .e. (6.74)

E,(8) is the exponential integral,

o0 -X '
E,(B)=f6 § dx .. (6.75)

The integral 'Do.(fx,(a,cb')e) is evaluated by putting x=0WU in

eq.(6.71). We get
Da (o(,/a) $;6) = —g—[ (/ -~ -fi)/n ("—?é-x)ﬁ—xdx. ... (6.76)
Expanding the logarithmic term, eqg.(6.76) becomes
G ,478) = bn(552) [ (1-42) ey
P + %‘f:(/ - ’fﬁ‘)/(n x € dx e a(6.77)
= An (2356-) Dy (45 06)

+%‘-/;/nxﬁ_xdx —xcﬁf:’—&%}- e dx. .e.(6.78)

The integrals of ed.(6.78) have already been evaluated for hydrogen in

Appendix C. They are

f:«é“ x € de = 4nb 77+ £ (8) .e.(6.79)

f:/; L edu=Anb E (0) + & (8) ...(6.80)
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‘where &, (8) = /e -—E—_)-(—ﬁ dx. : ...(6.81)

Analytical approximations to this function are given in Appendix C.

Using egs.(6.79) and (5.80) in eq.(6.78), we obtain

Da (e, p,¢j0) = An (Lz—gﬁ—) Dy(x, ¢ ;6)
+3[ g e+ g (9)]-

~x$[Anb EO) re ()] 6.

which can be rearranged in terms of I);(d,(%;g) to give

Da () p,¢78) = An(r254) Dy (o 4 ;)

.-f—-%(—[E,(G)—qS@ € (8)]. vet(6.83)

8. COMPARISON WITH HYDROGENIC VALUES

We wish to compare the lithium-like and'hydrogenic collisional exci-
tation rate coefficients of the transitions between the average states
n' and n of these ions. The average rate coefficients of the n' -> n
transitions are obtained from the individual n'A' -> nd rate coeffi-

cients by summation rules which we now derive.
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The excitation cross-sections obey the summation rules (6.45) and

(6.46), viz.

Gyt n (w) = ?z: Sng'sne ()

Wnia!
6"'—9’\ (Ar> = % w”’;f (D—”'.ll")n (N—) .

Integrating these expressions over a free electron velocity distribution

f(v), we obtain
fy S 0) ar $0) dhr = [ T Oprosna ) arf )i

=z o Cnitrome () ArF ) A= (6,84
and

L,(Sy,«a,,, (W) A F o) do- = ([ T el (v) Vf(/r)dw-

Wint {l -2n

:zé‘_ ”'f Spigtmsn ) - F16) dir ... (6.85)

From the definition of the collisional excitation rate coefficient,

ed.(6.61), we thus have the surmation rules
Cn(l'—m (T) = % C,,ul__,n/[ (T) ...(6.86)

and
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Cnl_.),, (T) = ;. ‘b—:)dﬁn%i' Cn’.l’—gn (T). | ees(6.87)

A satisfactory comparison of the hydrogenic and lithium-like rate
coefficients is difficult since the average rate coefficients for exci-
tation of hydrogenic ions are obtained by neglecting the forbidden tran-
sitions. On the other hand, the lithium-like rate coefficients
C,"J,n('r) obtained from egs.(6.86) and (6.87) include all transitions
and thus they cannot be compared directly with the hydrogenic values
calculated from the work of Drawin (1963, 1964, 1966) (see Section 5 of
Chapter 1I). However, we will compare the hydrogenic wvalues of
Crwon(T) with the lithium-like values obtained by carrying out the
summations (6.86) and (6.87) over allowed transitions only, and also
over all transitions (allowed + forbidden). We will thus be able to
compare directly all transitions with n ¢ 6; for transitions to states
n 2 7, direct comparison is not possible since the contribution of the
forbidden transitions ;o the average rate coefficients of the lithium-

like ions is not known.

In Fig.6.21 and 6.22, the rate coefficients for excitation from the
states n' =2, 3, 4, and 5 to all states n ¢ 11 of N V and a hydrogenic
ion with Z = 5 are given at temperatures of- 16,000 K and 256,488 K. The
average rate coefficients of the 1lithium-like ion NV summed over
allowed and forbidden transitions are found to be greater than the cor-
responding hydrogenic rate coefficients by a factor of up to ten. This
is partly due to a significant contribution of forbidden transitions.

However, we also observe that the lithium-like average rate coefficients
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sunmed over allowed transitions only are larger than their hydrogenié
counterparts at large an by a factor of up to three, whereas, for lower
values of an, they are of comparablé magnitude. Since Drawin's hydro-
genic rate coefficients are also approximate, the agreement between the
lithium-1like and the hydrogenic rate coefficients summed over allowed
transitions only is quite reasonable, especially when uncertainties are
taken into consideration. Drawin's results should be good to within a
factor of two, and the lithium-like coefficients to a factor of four or
more (see Section 9 of this Chapter). These give possible errors of a
factor of eight or more which is well over the factor of three mentioned

above,

9. ACCURACY OF THE RATE COEFFICIENTS

The accuracy of the excitation rate coefficients depends on how good

the available cross—-sections and the extrapolated parameters are.

The accuracy of the cross—-sections of the 2s -> ns, np, nd, nf and
2p -> ns, np, nd transitions is discussed by Bely (1966a, b) and Bely
and Petrini (1976). The 2s -> 2p cross—section is accurate to within a
few percent ; the cross-sections of the other transitions are reliable
to within a factor of two for the first few ions of the lithium isoelec-
tronic sequence. However, as 2 inéreases, the Coulomb-~Born approxima—
tion gives better results and the accuracy of the cross-sections becomes
better than a fuctor of two.  The rate coefficients for excitation of
the 2s and 2p states of C IV, NV, and O VI are thus within less than a

factor of two of the actual ones.
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For the excitation of the 3s and higher states of C IV, NV, and

O VI, the accuracy of the cross-sections depends on how reliable the
extrapolated parameters of these transitions are. As eq.(6.44) shows,
the error in the cross-section will thus be dominated by the error in
the parameter . &% 1is reliable to better than a factor of two; how-
ever the errors in B and <f will increase the error estimate of the
cross-section to a bit higher than a factor of two. Since the parame-
ters are extrapolated from the data on the excitation of the 2s and 2p
states, and since these data are in error by less than a factor of two,
the extrapolated cross-sections should approximate the actual ones to
within a factor of ~4 in most cases. The rate coefficients for excita-
tion of the 3s and higher states of C IV, NV, and O VI will thus be, in
most cases, within a factor of ~4 of the actual ones, with a possible
maximum error of a factor of ten because the 1lithium-like rate coeffi-
cients are within a factor of ten of the corresponding hydrogenic coef-

ficients as seen in Fig.6.23.

Thié error estimate applies to all transitions with the exception of
the an = @ transitions. The uncertainty in the rate coefficients of
an = @ allowed transitions must be increased because of the large error
in the oscillator strengths associated with these transitions (see Sec-
tion 3.3.b of Chapter IV). Furthermore, the parameters of the an = ¢
forbiddén transitions have been obtained by a very crude method, and no
estimate whatsoever of the resulting errors can be given. Fortunately,
An = @ forbidden transitions contribute very 1little to an = @ transi-
tions and their effect is thus quite negligible. It is to be understood
that the error analysis given in this Chapter is correct as long as no

- excitation of the inner shell electrons occurs.



(cM3s™ )

LOG (COLLISIONAL EXCITATION RATE COEFFICIENT,Cnuwn)

241

-4.00

g-00

J

4-n

NV
H.Z=5

-JZ.OQ

3+n

NV
HeZ=5

-JS.OQ

&

— NV - ALL TRANSITIONS
X NV - ALLOWED TRANSITIONS ONLY
A H WITH Z=5

"FO . 00.

h 2-.”

24,90

-38 . 00‘

o

f92.00

"

36.00

1

u‘40 . 00‘

.00  4.00  S.00  6.00  7.00  8.00  9.00  10.00
PRINCIPAL QUANTUM NUMBER.N

FIGURE 6.21 - ELECTRON IMPACT EXCITATION RATE
COEFFICIENT OF N V AND OF A HYDROGENIC
ION WITH Z=5 AT T=16000K.



-8
0[

i1 llllll_lL

l]‘,o 3 [ lllllll [ { LlllllL
N
¢
o 3
i
¢
i §
%
+
-
/
=z
<

o7

-8 ]

10

-9

] 0‘!0

n

COLLISIONAL EXCITATION RATE COEFFICIENT.Cnawn (CM3S™")
1 O-IZ

10

242

X NV - ALLOWED TRANSITIONS ONLY
— NV - ALL TRANSITIONS

3-n
H,Z =5
X
H,2=5

-

.
NV
: W,275
(]
Z
- NY
] H,2=5
3.00  4.00 5.00 6.00 7.00  8.00  9.00  10.00

PRINCIPAL QUANTUM NUMBER.N

FIGURE 6.22 - ELECTRON IMPACT EXCITATION RATE
COEFFICIENT OF N V AND OF A HYDROGENIC
ION WITH Z=5 AT T7=256000K.



(CM3s™")

COLLISIONAL EXCITATION RATE COEFFICIENT.Cnwn

107 |10"
L Liriin

11 lllllll

1

243

10 — NV

X H WITH Z=5

S5+n TRANSITIONS

10

wn
® =
‘o e
~ £
3 %
: bl
-,
1 o
o - | d
'© <
—=] 2
~ ™M
70
23—
2: THE CURVES LABELLED 4 AND 10
g CORRESPOND TO ERROR ESTIMATES
] OF A FACTOR OF 4 AND 10 ‘
n RESPECTIVELY.
‘o
3.00  4.00  S5.00  6.00 700 800  9.00  10.00

PRINCIPAL QUANTUM NUMBER.N

FIGURE 6.23 -~ ELECTRON IMPACT EXCITATION RATE

COEFFICIENT OF N V AND OF A HYDROGENIC
[ON WITH Z=5 AT T=64000K.



Chapter VII

C IV, NV, AND O VI: COLLISIONAL DE-EXCITATION RATE COEFFICIENTS AND
THREE-BODY RECOMBINATION RATE COEFFICIENTS

1. INTRODUCTION

The rate coefficients for the collisional de-excitation of an ion by
electron impact and for three-body recombination are related to the rate
coefficients of the inverse processes of electron impact excitation and
ionization respectively by the principle of detailed balancing (see Sec-

tion 6 of Chapter II).

2. THREE-BODY RECOMBINATION RATE COEFFICIENT

The rate for three-body recombination of a free electron into state n

of an atom or ion is given by (Drawin, 1963)

- W wa e
%) = TR 2w €™ S (T) el (7.1)

vhere U is the partition function of the ion before recombination, w,
is the statistical weight of the recombined electron in state n,
On=I,/kT I, is the ionization potential of level n, and S,(T)
is the collisional ionization rate coefficient. Numerically, for T in

Kelvin and S\ (T) in cm?¥/s,

16

~ 6
2.0 X 10 A n € 1
O (T) = — A m €S, (T) emts™! eu(7.2)

Substituting for 35,(T) from eq.(5.11),

- 244 -
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5.0ox (0”3
L, T%

O (T) = 2):' E'(6,) cmbs™' eeu(7.3)

where I, is in Rydbergs. Alternatively,

_ 1.8x107"% wa E/(bn) 6 o=t
o (T) = e T} em® s ee(7.9)
on
where £, (8a) = €77 £ (64) eea(7.5)

and E,(Br) is the exponential integral. For 1large values of ©,,
eq.(7.5) can be evaluated with eq.(2.72). The accuracy of the rate
coefficients calculated with eq.(7.4) is comparable to that of the col-
lisional ionization rate coefficient S,(T) used in eq.(7.2) and is

discussed in Section 6 of Chapter V.

The rate coefficient for recombination of an electron into an average
state n can be obtained from the rate coefficients for recombination
into the individual nA states of n from the following summation rule.
From eq.(5.19), the summation rule for collisional ionization rate coef-

ficients is
Su (T) = %: %ﬂf Sne (T) vea(7.6)

where Wse and W, are the statistical weights of level nA and of the

average level n respectively. From the principle of detailed balancing,

S,(T) is related to K,(T) by eq.(7.1):

S, (T) = —Si— e~ Xy (T) e (7.7)
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K - Z(lﬂm k Tjslz

"where PE

Substituting for S,,(T) and S,(T) into eq.(7.6) from eq.(7.7), we

obtain

Ont

Kl e o) = T4 g € w0y () e
which becomes

X, (T) = lZ g o o Kne (T). .t (7.9)
As n increases, 0, %0, and

Kn (T) 2 )2; Kpe CT). ‘ . (7.10)

3. COLLISIONAL DE-EXCITATION RATE COEFFICIENT

The rate coefficient for de—excitation of a bound electron from state

n to n' by electron impact is given by (Drawin, 1963)

_ Wnt o"'h
Fpow (T) = won €7 Cpyn (T) eea (7.11)
where W, and W, are the statistical weights of states n' and n respec-
tively, 8ny=Ew,/ kT , E,,is the energy separation of levels n' and
n, and C,,._,n('\") is the collisional excitation rate coefficient. Sub-

stituting for C,,,(T) from eq.(5.68), eq.(7.11) becomes



F;an'( T)= 5.4§5 ai:(;i' Z)

-1
T3/2 w g h—>p (T) CM o

where
D:n-en(T) = 69»"1 -Dn'—m (7—).

For forbidden transitions,

Frsn = (2]

Dh'—m ( T)

Ds(4,456)

= [e?-40E,(0)]

and for allowed transitions,

g

n'-np = j;h+n
Dyan (T) = Da (%, p,$5 6)
=/n(/.zs,5) Dj(a’,%;ﬂ)

+ -—2‘—-[5,(&) - $6€.00)]
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oo (7.12)

ee(7.13)

e (7.14)

.. (7.15)

ee(7.16)

ee (7.17)
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where J,.,, is the absorption oscillator strength for the n' -> n tran-

'sition,
&,(0) = fo —%5)— dx e (7.18)

and all other quantities are as defined in Chapter VI. The evaluation
of eq.(7.18) is discussed in Appendix C. It should be noted that the
parameters «, @., <t>, and © are equivalent to the subscripted parame-
ters oppns (Sn'n' 4)“.", and 0O, respectively. For large values of 6,

eq.(7.15) and (7.17) are written as

Di (#,¢56) = €° Ds(x¢;06)

= _;_‘_[ / ~ c,b@E,’(Q)] el (7.19)
and
D, (x, A ¢,9) - %D, (0(1,3,45,'9)
= An (1258) Dy («,4;6)
+_g__[ E!(8) ..},5@ é,’(é‘)] cee (7.20)
where E'(0)=e€°E,(0) is evaluated with eq.(2.72) and

€ (0)= 3961(9) is evaluated in Appendix C. The accuracy of

eq.(7.12) is comparable to that of the collisional excitation rate coef-
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ficients from which it is evaluated. A discussion of this accuracy is

given in Section 9 of Chapter VI.



Chapter VIII

C IV, NV, AND O VI: RADIATIVE RECOMBINATION RATE COEFFICIENTS

1. INTRODUCTION

The radiative recombination rate coefficients of a large number of
states of the lithium-like ions C IV, N V, and O VI are required in this
work. Some calculations of photoionization cross-sections, f£rom which
the radiative recombination rate coefficients can be obtained by the
application of the principle of detailed balancing (see Section 6 of
Chapter II), are available., But only a limited number of states are
covered by these calculations. However, more general methods, £from
which approximate values of the cross—sections can be obtained, are

available.

2. AVAILABLE DATA

The lower quantum states have been well investigated by several work-
ers and with various methods. The following is a list of the more impor-
tant papers:

Varsavsky (1963): 2s, 2p, 3s, 3p, 3d, 4s, 4p states of 0 VI;

Ivanova (1964): 2s, 2p, 3s, 5s states of NV and O VI;

Hidalgo (1968): 2s, 2p, 3s states of C IV;

2s, 2p states of N V;
Leibowitz (1972): 2s, 2p, 3s, 3p, 4s, 4p, 5s, 5p,
6s, 6p, 7s, 7p states of C IV;

Missavage and Manson (1972): 2s state of 0O VI;

- 250 -
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John and Morgan (1973): 2s state of C IV;
Tiwari et al. (1975): 2s state of C IV, NV, and O VI.
Most of the calculations have been performed on the ground and the first
few excited states; some higher excited states have been investigated,

but in general, as n increases, the data become scarcer.

There is good agreement between the various calculations except at
and close to the threshold of ionization where some values of the
cross-sections differ by as much as a, factor of two. However, the
results of Tiwari et al. (1975) are systematically lower than the others
by a factor of ~2 for C IV and ~1.5 for N V but there is good agree-
ment for O VI. Fig.8.1 shows the photoionization cross—-section of the

2s state of C IV as calculated by various methods.

3. CALCULATED DATA

The photoionization cross-sections of 1lithium-like quantum states
with low values of £ can be calculated from a method which is an exten-
sion to bound-free trénsitions of the Coulomb approximation (Bates and
Damgaard, 1949) used in the caléulation of bound-bound transition proba-
bilities (see Section 3.2 of Chapter 1V). In this context, it is usu-
ally referred to as the quantum defect method (QDM). It was first
developed by Burgess and Seaton (1958, 1§6ﬂ) and later improved and

extended by Peach (1967).

We shall use Rydberg energy units throughout. Let L. be the ioni-
zation potential of an electron in state n{, bound to an ion of core
charge Z; hp the energy of the absorbed photon; k'* the energy of the

ejected electron. The energy conservation condition is then
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2
ho = Tpe + k' ‘ cee(8.1)

and the photoionization cross—-section (Burgess and Seaton, 1958)

4T x a? Tae + k%
Qny (/e'z) = 3 "Inez

f R
x Cll/g(n*l‘;é'l)/ .e.(8.2)
L'=hzy
where 4T ®02/3 =8.5594 x 167" am®, Cp = AL, /(2L+1)  for

hydrogenic and lithium-like icns,
9('1*156'1’) = I, fo PuCr) r Fep (r) dr, ... (8.3)

n* is the effective quantun number of state nAd defined by
I, = 2*/n** |,  and the other constants have their usual meaning.
P (r) and Fuygi (r) denote respectively the initial staté bound radial
function and the final state continuum function of the ejected electron.
e obeys the relation k'?2 = z2%¢! and corresponds to the € used by Sea-
ton (1958a, 1966a, b) 1in his quantum defect theory (QDT) (see Section

9.1 of Chapter III).

It is possible to write S(n*};;e’i’) as follows:

B(n*L;e't’)
VE (n*2)

g(nleld')=

x Cos Tr[ n* +/u,z,(€')+X("*«€}6’l')] .ee(8.4)
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- where

Lin*e) = | + ﬂ*3 #5) ...(8.5)

is the correction factor to the normalization constant of the wavefunc-
tions (expressed as Whittaker functions) used in the Coulomb approxima-
tion and 1is given by Seaton (1966b). /11.(6‘) is the quantum defect
function extrapolated to positive values of the valence electron energy
by using Seaton's (1966b) quantum defect theory (see Section 9.1 of
Chapter III). X(n*ﬁ;e'l‘) and a function G(n*L;€Ud') defined by
G(n*L;en') = (/+/1*Zé )? Bln*dL; el ') ...(8.6)

.Zn*

are tabulated by Peach (1967).

These tables were interpolated with a parabolic formula to obtain the
photoionization cross=sections of ns (2 € n ¢ 9) and np (2 £ n ¢ 6)
states of C IV, NV and O VI. ' As seen in Fig.8.2, the cross-sections
are in close agreement with the works previously mentioned which also
include values calculated with the quantum defect method. In view of
this and of the need for a consistent set of data, we will use the pho-
toionization cross-sections calculated with the quantum defect method

for the s and p states of the ions C IV, N V, and O VI.

Since d and higher £ -value states of lithium-like ions are closely
hydrogenic, the photoionization cross-sections of these states can be

obtained from tables of hydrogenic values calculated by Burgess (1964)
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where a quantity @( hi',K'l') is tabulated and is related to eq.(8.2)

by the relation

2 ( Z “K',e()
ndse'l - Bnts .. (8.7
lg(i) )l l+n1Kl2 (8.7)
where K'* = ¢'. Fig.8.3 compares the cross-sections obtained from Bur-
gess' and Peach's tables for the 3d state of O VI. We see that the
hydrogenic approximation is indeed justified for d, and thus also for

higher X -value states of lithium-like ions.

For those states n which have been averaged over the individual
states n{ , the method proposed by Seaton (1959) will be used to obtain
the radiative recombination rate coefficients directly. This method,
appliqable to average hydrogenic states, 1is based on the asymptotic
expansion of the Gaunt factor derived by Menzel and Pekeris (1935) (see

Section 9 of Chapter II).

4. FIT OF THE DATA

The calculation of the radiative recombination rate coefficients from
the photoionization data requires that the latter be fitted to some sim-

ple empirical algebraic expression.

We write the cross-section as a function of the energy of the inci-
dent photon in units of the threshold energy. From the energy conserva-

tion relation (8.1), viz.

Ao = j:mé + ky‘z,
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the threshold energy is
ho, = Ly ... (8.8)
and the energy of the incident photon in threshold energy units is

U= ho/ ho, ...(8.9)

The asymptotic behavior of the photoionization cross—section is known to

be (ILvanova, 1964; Fano and Cooper, 1968)

a(u) ~ wr, ...(8.19)

This suggests using a semi-empirical function of the form

_ _C 5 b bm
d(a)~—&~;[/+—&'—+—;(-;+---+ u"'] ... (8.11)

where C and by, k =1, ..., m are fit parameters. A similar expression
has been proposed by Seaton (1958b) but he includes only the terms of
order # and 1 in the sum. Since the rate coefficient is calculated by
integrating the cross-section over a Maxwellian energy distribution
function, the parameter p is assigned integral or half-integral values
to facilitate the evaluation of these integrals; the same restriction
has been used by Henry (1974). Furthermore, p and m are restricted to
the range of values d ¢ p ¢ 5 and 1 ¢m £ 9 to simplify the evaluation
and improve the accuracy of the integrals; this is more fully explained

in the following pages.
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The function (8.11) is fitted to the cross-section data of state nAf
by using a least squares method in which the sum of the squares of the
relative differences between the fit and the actual values of the
cross-section is minimized. This procedure provides a uniform fit for

all values of the cross-section, large or small (see Appendix D).

The set of parameters which best fits the cross-section of state nf
is then derived as follows: suitable values of p and of m are chosen;
the ensuing conditions imposed on the parameters C and by, k =1, ...,
m by the fitting procedure result in a set of linear equations which is
solved numerically for the unknowns C and by, k =1, ..., m. This is
repeated for all allowed values of p and m, and the resulting sets of
parameters are analysed and a best set chosen. Several factors affect

this choice.

i. We define a relative deviation

Ry = \/'Fj‘é (%Z—‘-‘)Z ... (8.12)

where X; is the ™ wvalue of the cross—section for photoionizaticon

from state nf ; N such values corresponding to different values of the
energy U are available. AX; 1is the difference between x; and the fit
value X;: AXi= Xi~X; . (The standard deviation is defined as (Ken-

ney and Keeping, 1954, p.77)

. z
S, = ~ ¢=Z, (ax:)% .ea(8.13)
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Evidently, Rh should be as small as possible; for Ry g 9.180 x lﬂ—z,
'the difference between the actual rate coefficients of hydrogenic ions
given by Burgess (1964) and the values calculated by integrating
eq.(8.11) is about #4.2% at témperatures of 1,000,708 K and 0.02% at

500,000 K provided the following criteria are also satisfied.

ii. We define a quantity
m
P-r = kz:blc /(bk)max ees(8.14)
=1

where bk' k=1, ..., mare the fit parameters. The value of Ry
should be as large as possible. The reason for this is that the terms
in the sum kZ':‘ be /u® are usually arranged in pairs in which the terms
alternate in sign and are of comparable magnitude; this causes signifi-
cant cancellations in the sum and thus loss of significant digits. For
Ry 2 #.5, the evaluation of the sum will not increase the error esti-

mate quoted previously in factor i.

iii. The rate coefficient 1is obtained by integrating the cross-sec-
tion over an exponential function of negative argument. As is seen in
Fig.8.4, the largest contribution to the rate coefficient comes from the
region of low values of U; emphasis shoulcd therefore be put on those

parameters which provide a good fit at low values of U.

iv. The smaller the values of p and m are, the easier the rate coef-

ficient is to evaluate. The smaller number of operations done further

minimizes the loss of significant digits due to truncation errors.
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These criteria may not all be satisfied simultaneously; it then
becomes necessary to compromise between them to obtain the best set of
parameters. Under these circumstances, the following order of decreas—-
ing importance was assigned to fhe factors: ii, i, iii, iv. | Tables
8.1, 8.2, and 8.3 give the best sets of fit parameters adopted for the

states of the ions C IV, N V, and O VI respectively.

5. RADIATIVE RECOMBINATION RATE COEFFICIENT

The radiative recombination rate coefficient is obtained from the
photoionization cross—-section by applying the principle of detailed

balancing. The rate coefficient is then given by (Seaton, 1958b)

_he
/&1(7‘) = D,,e(T)fzu () @ (0) € % dtaw) . .s.15)

where
~-¥a k
Dng (7) = _CL;\/?TZ_- (mkT)" w’“‘ e 4 ...(8.16)

T is the free electron temperature, wyy the statistical weight of level
nf, w: the statistical weight of the final ion, and the cther symbols
have their wusual meaning. Using threshold energy units, eq.(8.15)

becomes

-9r{1¢(

ﬁM(T) = D (T) Iuj u* Qe () € ... (8.17)
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where On= In/ kT . Substituting for

section from eq.(8.11), viz.
Mo b
Qu (1) ~ L. 5 —£%
nt UP k=0 UR

in eq.(8.17), we obtain

Bt €T) = Dy (7) I, C

ka:o bk Sz-P-k (enf)

where we have introduced the function

*

Sulx) = [T u*e™™ au

P/

no restrictions are imposed on the value of /.x

are to be used in eq.(8.18):

Wy =2 (2L+1),

— 2
Wy = 2n*

and for TI,, in Rydbergs and T in K,

8, =157,890 L,n/T,

Du (T) =

[
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the photoionization cross-

... (8.18)

ve.{8.19)

The following relations

eeo(8.20)

...(8.21)

-3 -
2,062 X 10“—‘{:-’!-'_!! T /2 (2‘9'”E em 57 Ryd 3 ..(8.22)
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6. EVALUATION OF Su(x)
S,,.(x) need be evaluated only for integral and half-integral values

of /u. In these special cases, S,L(x) reduces to well-known functions.

6.1. Integral values of u

We put = m where m is an integer. For m > @, we have the function
/lk

(Abramowitz and Stegun, 1965, p.228)

o (x) = [ u™ e ™ du

/

=ml &_ 5 X ... (8.23)

For m < @ and m' = [m|{, we have the m'ﬂ‘ exponential integral (Abramow-

itz and Stegun, 1965, p.228):

XU :
E,.(x0) = f i,,,. «. ...(8.24)

By using the recurrence relation (Abramowitz and Stegun, 1965, p.229)
-_%
M Epy, (X)) = €7 =X E,plx), ... (8.25)

we obtain an expression for Em.(x) in terms of the expcnential integ-

ral €,(x) (Pagurova, 1961, p.ix):

- =
Em:(x—) = Pm,(x) e & X + '—;;;;L-):l-)—l— E,(X) vee(8.26)
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where

m'-2

Po(x)= __ ! _ "k _2)) (-x)*
P (%) Cieasy go (m 2)! (-x)°%, )

Rational approximations to E,(x) exist and greatly simplify its
evaluation. We usé approximations due to Cody and Thacher (1968) which

give an accuracy of 14S.

6.2. Half-integral values of iy

We put = mtl/2 where m is an integer. For m » @, the function
P

Xm(x) can be generalized to give
©  om+i ,-xU
Ay (x) = f, U5 E77 du

= Rolx) € +£—%}5—:—) erfc (w) ...s.)

where

R (y) = [m+s) S x~
m(x) X kZ=o /_'{m-l--?/z—k)

ee s (8.29)

and erfc(x) is the cdmplementary error function

erfc(x) = Y-_—;—/ e ““du. ...(8.30)
X
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For m< @ and m' = |m|-1, the general exponentiai integral (Pagu-
g

rova, 1961, p.ix) can be written as

...1a
Epiey, (%) = f’m dy

= o(,)( . e——x + T - _..(_____.-x)m’ e"f ((r—_ eee (3.
Qe (x) Tl ey c(Fx") ...(8.31)

vhere

5 (- X rmw-k- ), ... (8.32)

6.3. Asymptotic expansions

Numerical calculations with egs.(8.26) and (8.31) become impractical

for large values of m or x. This is due to the fact that, under these

conditions,
—-X (_;x)m'-,
Pml(l)'c &-m E,(X)
and

Qu(0-€ "2 =L F{;’f)_'" erfe (%),

The use of asymptotic expansions solves this problem. For large

values of x, we have the well-known relation (Pagurova, 1961, p.xi),
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3 Lx)-_—[/+/,(/a)5(/)kp( Ttpek) @(m,x)] .o+ (8.33)
where
IR (mk)] < Fl//f";";') . xl"'*‘ . .. (8.39)

For large values of both x and ol it is more convenient to use (Pagu-

rova, 1961, p.xii)

. &~ H (p-2X)
Ef“(x) XT M [ I+ (x+pm)= + f(x/:/.()f
4 Lo XT3 pux */‘z)] + 7?/,.61) ...(8.35)
(lfyt)é :

where
R.(x) = /‘j‘m e " [-2427u® +58 px*u™ -22 u*xu
2]/ Lu* (xurp)? ] au ... (8.36)

and

/'?,v-(")/ < {x (x/:;)x /—z4x3+ (-72 +58 p) x*

+ (xr1)(-14 + 16 p -—zz/ﬁ) +/L° / ... (8.37)
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The asymptotic expansion (8.35) is particularly useful since its
.accuracy depends on the value of x+M . It is thus "also applicable to
large x and small Poras is expansion (8.33). Although, in this case,
expansion (8.33) may give more accurate results than expansion (8.35),
the accuracy obtained with the latter is more than sufficient for our
purpose. We will thus use eq.(8.35) in all the calculations where the

asymptotic expansion of the general exponential integral is required.

6.4. Accuracy

In Fig.8.5, we compare the accuracy obtained when E,(x) and
E m+ v, (X) are calculated with the exact relations (8.26) and (8.31) and
when Ej,_(x) is calculated with the asymptotic expansion (8.35). The
minimum accuracy, obtained for x+p 215, is of w~d4s, If for x+m< 15,
we use the exact expressions and, for x+m > 15, the asymptotic expan-
sion, the accuracy of E,(x) and E,,,, (x) will be better than 4S and
will increase as we move away from x+um= 15 in either directions
(x+p 2 15). It should be noted that if the exact expression is used to
calculate E, ., (%) for x+m< 48, a minimum accuracy of 6S is obtained
for half-integral values of M- However, such accuracy is not necessary
since the photoionization cross-sections are not known to better than

2-3S (see Section 8 of this Chapter).

7. COMPARISON WITH HYDROGENIC VALUES

We calculate the radiative recombination rate coefficients of the

average states n from the rate coefficients of the individual nl states

with the formula
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Po = Z pn | ...(8.38)

This relation is written down by analogy with three-body recombination
rate coefficients where a similar formula is derived (see Section 2 of

Chapter VII).

The values of P" obtained in this way are compared in Fig.8.6 with
the hydrogenic values calculated with Seaton's (1959) work. At low
values of n, there is some difference between the hydrogenic and the
lithium-like rate coefficients but, as n increases, the latter approach

the hydrogenic values.

8. ACCURACY OF THE RATE COEFFICIENTS

The final accuracy of the radiative recombination rate coefficients
depends on the accuracy of several intermediate steps: the numerical
evaluation of the function S,(x), the choice of the parameters used in
the semi-empirical representation of the photoionization cross-sections,
and finally the values of the cross-sections. S,(x) 1is accurate to 4S
or better and the parameters chosen provide in most cases an accuracy in
the rate coefficients of about 35 for T ¢ 1,000,000 K and 45 for
T £ 500,008 K. The accuracy of the rate coefficients is thus limited by
the cross-sections used, especially sincé these are calculated from

approximate methods.

The photoionization cross-sections of the s and p states are calcu-
lated from the Coulomb approximation applied to bound-free transitions.

In the case of bound-bound transitions, the CA gives good results. The
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FIGURE 8.6 - COMPARISON OF THE RADIATIVE RECOMBINATION
RATE COEFFICIENT OF THE LITHIUM-LIKE ION
C IV WITH A HYDROGENIC ION WITH Z=4.
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uncertainty arising from the use of the approximation was estimated by

-comparing lithium-like oscillator strengths calculated from the CA with
the tables of critically evaluated values published by Martin and

Wiese (1976b). 2part from a few exceptions, the CA values were found to
be systematically lower than the Martin and Wiese values; furthermore,

in most cases errors of ~15% were observed, the maximum error being

~25%, Assuming that the error estimates for the bound-bound transi-

tions are applicable to the bound-free transitions, we assign an error

of ~15% arising from the use of the CA.

Using the CA for bound-free transitions also introduces an additional
source of error which is not present when dealing with bound-bound tran-
sitions. This uncertainty comes from the extrapolation of the quantum
defect function F4(e) to positive energy states of the valence elec-
tron. /Aice) is calculated with Seaton's (1966b) quantum defect theory
(see Section 9.1 of Chapter III) which is reasonably accurate if a suf-
ficient number of high quality data on the energy states are available.
Some data are availablé for the s and p statesof C IV, NV, and O VI
from which extrapolation is poséible but, as discussed in Section 9.1 of
Chapter III, not enouwgh data are available to have a highly accurate

extrapolation. However, since the cross-section behaves as

-

Que (1) ~ Coszﬂ[n* r/ul,(e')+7((n*/€,'e'.,€')] ... (8.39)

and since /4ﬂ(€ﬁ‘< n* by at least a factor of ten, the effect of the

error in ,&v(ﬁ') on the cross-section remains within reasonable bounds.
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The smaller the value of L' is, the more data on energy states are
-available and the better is the extrapolation of Mt ). Furthermore,
the larger the value of £' is, the smaller the absolute value of Har (e')
becomes. Thus taking A,uy(é') = t@.01 for all values of L' is a rea-
sonable estimate for the error in }L‘t(é'). With this value, the error

in
Cos* [ n* t My (') + X(n*L; 6'1')]

is found to be ~5% in most cases, with a maximum value of a/1#%. Since
other elements of eq.(8.4), such as the functions G(N*JL;é'l') and
p.&¢ n*L;e'J)) , could be in error, we fix the error irn the cross-sec-
tion arising from the approximate representation of the final continuum
state at ~10%. The total error in the photoionization cross-sections
and thus in the radiative recombination rate coefficients of the s and p

states is thus estimated to be ~25%.

Since the cross—sec;tions of the 4 and higher L-value states were
obtained from the hydrogenic caiculations of Burgess (1964) , and since
Burgess' work gives results accurate to 55, the error in these cross-
sections depends on how close to hydrogenic the lithium-like d and
higher states of C IV, NV, and O VI are. "I‘ne quantum defects of these
states are very small; for example, the quantum defects of the bound d
states are approximately equal to 4.003. The departures of the rate
coefficients from the hydrogenic values should thus be very small; we
can expect an accuracy of at least 2-3S in the rate coefficients of the

d and higher states of C IV, NV, and O VI.
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The error in the average rate coefficients F" calculated from
eqd.(8.38) will be dominated by the 25% error in the rate coefficients of
the s and p states. Comparison of the hydrogenic and exact values of
Ba in Fig.8.6 shows that an erfor of 25% in the s and p states is com-

patible with the results.

It should be noted that the values of the radiative recombination
rate coefficients calculated in this work are accurate to within the
limits previously mentioned as long as the energy of the incident photon

is small enough that no inner-shell electrons are photoionized.



Chapter IX
RESULTS ON POPULATION INVERSION, COMPARISON WITH LINE INTENSITIES IN
WOLF-RAYET SPECTRA, AND CONCLUSIONS
C IV Tines are very prominent in the spectra of the WC category‘ of
the Wolf-Rayet stars as is evidenced in the tracings of the spectra of
Wolf-Rayet stars obtained by Smith (1955) and reproduced in part in
Figs.9.18 to 9.20. We have thus carried out detailed calculations on
“this ion. In Fig.9.1, the Grotrian diagram of C IV is shown and the
transitions among states with n € 6 giving rise to lines in the visible
region of the spectrum are also shown. We have concentrated our atten-
tion to these transitions since the level scheme used in this model (see

Fig.3.2) can only resolve the f£-value splitting of states with n & 6.

The adiabatic cooling of the plasma was simulated with the model out-
lined in Section 7 of Chapter III, and the population densities of the
excited states of C IV after cooling were calculated with the CR model.
Population inversions were found to occur 1in many of the transitions of
this ion. Plots of the gain &' versus T for the inversely populated tran-
sitions of interest to us were made for a series of values of he. Typi-
cal results for the transitions 6s-5p, 6p-=5d, 6d-5p, 6f~5d, 6g-»5f,
and 6h+5g are sh.wn in Figs.9.2 to 9.9. These plots were then used to
determine the contours of equal «' on a ng, Te plot. The final results
for the transitions 6s--5p, 6p—~+5d, 6d-»5p, 6f+5d, 6g+»5f, and 6h-5qa

are shown in Figs.9.10 to 9.15. It will be noticed that these contours

- 281 -



(cm™)

ENERGY

ns’S nP2P° nd'zD“ . nf2Fe nézG  pRZHe T R
14
e S
- 10 - 10
500,000} e g —9 —9 -9 -3 -9
—8 —8 —8 -8 —~8 —8 —8
480,000} —7 -7 -7 -7 -7 -7 —7
— 68
460,000
440,000} | |
A 501658 501839
B 393489 3934.29
420,000} C 478588 4786.70
D 444147 444034
o —4 —4 E 464600
F 465830
400,000 —4 G 5811.98 5801.33
320,000¢ 3 -3 Wavelength in A
e
300,000 —3
100,000
—2

OF —_2

Figure 9.1 - Grotrian diagram of C IV.

28¢



Os
|
(0
]

xX AD (cm'sec™)
Ouw
|
|

CXI

4 5
0 Te (K) | 10

Figure 9.2 - Typical «' versus To plot for the 6s=5p transition of C IV.

283



I
o

sec ')
W

1O -

o' =ox AD (cm’”
Ou
|
©

]

|
4
0 1, (K)

Figure 9.3 - Typical «' versus T plot for the 6p->5d transition of C IV,

5
10

284



Ne (10%em?®) -~

A 22

7.6

Op
l

Ou
I
>
|

X AL (cm’'sec™)

77

!
\\
-

N |
4 5

0 1. (K 0

Figure 9.4 - Typical &« versus T, plot for the 6d->5p transition of C IV.

285



_qugﬁﬁ I
|05- Ne (10'*cm?) - 256
| 8
1
-O
S10 - -
+ 13
&
L
2] 5
o)
-
5 3
10 - 17 7
WETS
|
| |5
10 10

Te (K)

Figure 9.5 - Typical &« versus T. plot for the 6f- itq



O
I
|

x'=xAD (cm’'sec)
O
|

Figure 9.6 - Typical &' versus T, plot for the 6f->5d transition of C IV.

287



10

o =X AD (cm'sec!)

10,

’ _ 28¢
Ne _(lo'4cm3)

=

13

4
O T, (K)

Figure 9.7 - Typical «' versus T plot for the 6g->5f transition of C IV.




289

1.5

X' =xAD (cm'sec?)
.

] '
]4 !
10 To (K)

Figure 9.8 - Typical &« versus T, plot for the 6g->5f transition cf C IV,

5
10



10 - ne (|O|4 Cm-3)

x' =xAD (cm'sech)

4 5
10 10
Te (K)

Figure 9.9 - Typical ' versus T, plot for the 6h->5¢ transition of C IV.

290




(cm™3)

10

Ne

14

13

10 |-

' (cm'sec!
10,000 -
3,000
1,000
| i
94 5

10

Te (K)

10

Figure 9.10 - n.-T diagram for the 6s->5p transition of C IV.

291



15

10,000 —7
3000 — 7
1,000 —

300 —

100 —

(cm™)

14

Ne

13

4 9
10 Te (K) 10

Figure 9.11 - n.-Te diagram for the 6p->5d transition of C IV.

292



293

:,SE‘ 300
= 100
= 14
10 —
Q
| -
3

L | . i

Figure 9.12 - ne-To diagram for the 6d=>5p transition of C IV.



2..
I X 10"}
—_ 8¢
o e
e
>
5 7
-
)]
Oy xi0t
c 8r
2 6r
i =
o 4f
LLI -
2_
1X10"
8..
-lllll 1 ] g1 1. 1 1141 ]

6 810 20 40 6080100 200
Electron Temperature (10° °K)

Figure 9.13 - n.-Te diagram for the 6f->5d transition of C IV (A4646).

294




@
N N I

Flectron Density (cm™)
o

i 11X 1 ] WD W S N I | i

6 810 20 40 6080ICO0 200
Electron Temperature (10° °K)

Figure 9.14 - ne-Te diagram for the 6g->5f transition of C IV (N4658).

295



I l
|O'5_ X' (cn'sec™) \\
{00,000
30,000
10,000
— 3,000
Hy
e 1,000
A 14 300 —
10 -
D
C
13 ‘
10 -
| |
4 5
10 [e)

Figure 9.15 - ne-Te diagram for the 6h->5g transition of C IV.

296



297.
are very similar to those obtained for He II \4686 by Varshni and Lam
(1976): the gain decreases very rapidly at high values of n,, decreases
less rapidly at lTow values of Te, and decreases slowly at high values of

Te and low values of ne.

The 64'~54 inversely populated transitions can be separated in two
broad categories: the &£ = +1 transitions (6s-5p, 6p~5d) with a gain
t:(:m~10+ cm™'s™' and the af = -1 transitions (6f-5d, 6g—5f, 6h-+5g)
with a gain tx',,‘;v'los cm's™'. The af& = -1 transition 6d—~5p is relati-
vely unimportant and has a much smaller region of population inversion
on the ne-Te diagram. Of the transitions shown in Fig.9.1, the 6g-5f
(46587\) and the 6f-+5d (4646/3) transitions are the most prominent. The
maximum value of «'is largest for these two transitions: o('~105 cm™'s™

for Tex~ 20,000k and ng>7 x 10'4 cm=3. Laser action will thus be most

intense for these transitions.

An analysis of the limitations of the model used in these calcula-
tions is now necessary if we are to assess correctly the relevance of
these results to physical observations. The model is based on several
approximations, the most important of which are:

i. the plasma undergoes rapid cooling (or rapid expansion) (see Sec-
tion 5.2 of Chapter I);

ii. the expansion of the plasma occurs under adiabatic conditions
(see Section 5.3 of Chapter I);

iii. QSS conditions prevail in the plasma (see Section 4.1.h of Chap-

ter I);
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iv. the plasma is optically thin; this condition is less realistic
since some degree of radiation reabsorption 1is likely to occur in the
plasma.

Departures from these conditions will affect the comparison of the

theoretical results with physical observations.

Given a plasma which satisfies these approximations, the accuracy of
the cé]cu]ated results will then depend on the accuracy of the rate
coefficients wused in the coupled rate equations of the CR model. In
"these calculations, the electron impact excitation rate coefficients
have the largest uncertainties, estimated to be a factor of about four.
In comparison, the uncertainties in the other coefficients are negligi-
ble. Consequently, we have investigated the effect of the uncertainties
in the electron impact excitation rate coefficients on the gain of the
transitions considered in this work. This procedure should provide a

good estimate of the validity of these calculations.

The electron impact excitation rate coefficients have been varied by
factors of up to ten, and model calculations have been carried out with
these valués of the rate coefficients. Qualitatively, the general beha-
vior of the population inversion scheme and the shape of the ne-Te dia-
grams are left unchanged. Quantitatively, a change in the electron im-
pact excitation rate coefficients of a factor of four results in a chan-
ge in the gain of the transitions of interest by a factor of five or
less, depending on the transition considered, the temperature and the

free electron density of the plasma.
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The uncertainties 1in the values of other quantities such as ¥ or n;
should only have a refining effect .on the results. The general popula-
tion inversion scheme is unaffected by uncertainties in the rate coeffi-

cients or in other quantities.

Under appropriate conditions, the previously mentioned results are
applicable to both laboratory and astrephysical plasmas. In particular,

we consider the bearing of these results on the spectra of Wolf-Rayet
stars, which are known to have an expanding envelope of hot ionized

gases.

When the speed of expansion of the plasma is low, the expansion will
be closer to being isothermal than adiabatic. However, as the speed of
expansion increases, the expansion will become more and more nearly adi-
abgtic, and certain spectral lines can then be expected to display laser
action. Let us compare this expectation with the spectra of various
classes of WC stars. WC8 stars have relatively sharp lines; since the
widths of the lines in an expanding shell arise from the Doppler effect,
the speed of expansion of the plasma must be low and the degree of laser
action is also expected to be low. The lines become wider in WC7 stars,
indicating that the speed of ejection is greater than in WC8 stars; cor-
respondingly, the degree of laser action is also expected to be greater.
The lines become still wider in WC6 stars; we thus expect the degree of
laser action to further increqse. We compare these expectations with

the observed data on thé spectra of WC stars.

A bright emission feature at about A465@ has been known in Wolf-

Rayet spectra for the last hundred years or so. A few years after the
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discovery of Wolf and Rayet (1867) of the bright lines in the spectra of
BD+35°4901, BD+35°4013, and BD+36°3956, Vogel (1873, 1883) described
their spectra in more detail. He found that both BD+36°3956 and
BD+35°4013 have a wide bright blue band with a maximum at about \4644.
Copeland in 1884 (quoted in Huggins and Huggins, 1891) measured the
position of the maximum in BD+35°4013 to be at N4654 and that in
BD+36°3956 to be at A4649. Huggins and ﬁuggins (1891) found the posi-
tion of maximum to be practically fhe same in the two cases, namely
N4650. The spectra of these two stars as reported by Huggins and Hug-

A gins (1891) are reproduced in Fig.9.16.

The curious behavior of the relative intensities of A465@ and A 4686
in classical Wolf-Rayet spectra has been known for the last 58 years
(Plaskett, 1924). Plaskett (1924) was struck by the remarkable varia-
ti;ns in the relative intensities of these two 1lines and noted 'The
ratio of 4658 C* to 4686 He™ is also peculiar, as the marked discontinu-
ity at the third group where the ratio abruptly increases tenfold dis-
tinctly shows. Examination of the spectra clearly indicates that this
is almost entirely due to the sudden increase in the strength of the
carbon band. Even supposing the interval between the second and third
groups to be greater than between the earlier ones, still the change in
the strength of enhanced carbon at 4658 is more abrupt than shown by any
other element and there must bg some physical reason which makes ionized
carbon behave in this uhique manner.' Varshni (1977) pointed out that

-such variations can be readily understood on the basis of laser action.

Over the years, the spectra of Wolf-Rayet stars have been investi-
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gated by many workers. However, very few tracings have been published.
In Fig.9.17, we reproduce a tracing of the spectrum of a WC7 star for
the wavelength region AN4200-4968 from a paper by Underhill (1959).

The strong line at A4650 is very prominent.

Smith (1955) carried out a series of detailed spectroscopic observa-
tions of the southern Wolf-Rayet stars. Portions of his tracings of the

spectra of three Wolf-Rayet stars are reproduced in Figs.9.18 to 9.2d.

In these figures, we have indicated the C IV 1lines identified by
Smith (1955). The behavior of the emission 1line at X465ﬂ is remarka-
ble. As we go from a WC8 star to a WC6 star, this emission line shows a
great increase in its intensity. This observation can now be understood
in the light of our calculations. Our results show that in C IV, the
4658 A line will chow the strongest population inversion and consequent
laser action under adiabatic expansion. Thus we find that as the speed
of expansion increases from WC8 to WC6 stars, the laser action in C IV
4658 becomes greater, leading to a rapid increase in the intensity of

this line.

It will also be noticed from Figs.9.18 to 9.20 that another line of
C IV arising from the 3p -=> 3s transition, namely )\)\58{51, 5812, also
shows an increase in intensity as we go from WC8 to WC6 stars. However,
our calculations do not show a population inversion for this transition.
This may be due to the breakdown of one of the previously mentioned
assumptions on which the model calculations are based. 1Indeed, if we
assume that a certain reabsorption of radiation occurs within the plasma
(which is probably more realistic for stellar conditions), we find that

laser action is possible in this line and in the X4650 lines.
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In conclusion, we find that the C IV )\X4646,4658 lines arising from
the 6f»5d and 6g +~5f transitions respectively, display strong popula-
tion inversions and should be excellent candidates for producing laser
action in laboratory plasmas cooled by adiabatic expansion techniques.
In the astrophysical context, the behavior of the line C IV A4650 obser-
ved in the WC category of the Wolf-Rayet stérs is found to be in agree-
ment with that expected from the model calculations. The present inves-
tigation thus provides an understanding of the unusual strength of the
C IV X4650 emission in Wolf-Rayet stars, and provides a strong basis for
-believing that laser action is responsible for it. It also raises the
possibility that certain other unusually strong emission 1lines observed

in Wolf-Rayet stars may also be due to laser action.



Appendix A
CRITERIA FOR THE APPLICABILITY OF MAXWELL-BOLTZMANN STATISTICS

1. UPPER LIMIT ON ne .

In a plasma of free electron density nekmf3, an electron occupies an
effective volume of 1/n, am®. Representing this volume by a sphere, the

average distance between two electrons is given by

a - (—"—)Vs. | (A1)

Ros = -,-ﬂb,\? | eee(B.2)

where the average velocity of an electron satisfying Maxwell-Boltzmann

statistics is given by

o= [-3kT
N Tm - eeo(A.3)

Maxwell-Boltzmann statistics will apply to free electrons in a plasma

if the following condition holds (Vedenov, 1965, p.235):

Xpp < 4. eee(A)
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Combining egs.(A.l), (A.2), (A.3), and (A.4), we obtain the condition

[A (2ka')3/2.

ne << -n-h3 .ﬂ. .oo(AoS)
Numerically,
3/2 -
e « Lzx10° T cm™2, .. (A.6)

This upper limit on ne is shown graphically in Fig.A.l.

2. LOWER LIMIT ON fe

The distribution of the free electrons will be Maxwellian if a suffi-
cient number of elastic collisions occurs between them. An expression
for the "self-collision time" t. of a group of particles interacting
with each other has been derived by Spitzer (1956, p.78). t. provides a
measure of the time that is required to reduce substantially any lack of
isotropy in the velocity distribution of the particles and to allow the
distribution of the kinetic energies to approach a Maxwellian distribu-

tion. For electrons,

t = 0200 T2 sec A7)
c ,en./l Ne . e (A,

where T is in Kelvin, ne in em®, and A. is proportional to the number

of electrons in a sphere of radius )\, the Debye length. ,[h_/L is some-
_times referred to as the Coulomb logarithm. It shows little variation;

for most plasma parameters, 5<fnA¢35. Tables of AnA for collisions of
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electrons and particles of charge +e, corrected for quantum mechanical
effects, are given by Spitzer (1956, p.73) and Mitchner and

Kruger (1973, p.59).

The lifetime of a free electron in a low density plasma is determined
by radiative recombination which predominates over three-body recombina-

tion. It is given by (Bohm, 1968, p.97)

o m
Ly = Oz 3kT .-+ (A.8)

 vhere Trg is the cross-section for radiative recombination, n; is the
population density of the ions mainly responsible for electron capture,

and all other symbols have their usual meaning.

A Maxwellian distribution will be established if the free electrons
undérgo sufficient elastic collisions before recombining with an ion.

This will occur if
t; >>tc' ..-(Aog)

Substituting egs.(A.7) and (A.8) in the above, we obtain

0.266 3k 2
Ne >> A\ T Ogg., ... (A.10)

The cross-section for radiative recombination into level n,(3§g, can be
_obtained by the principle of detailed balancing (see Section 6 of Chap-
ter II) from the cross-section for photoionization from level n, cH

n

(Drawin, 1963):
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2
RR ho Wn P ‘

&) = —————-) — .o (AL
n -] = o, (A.11)

where v is the velocity of the free electron, v the frequency of the
emitted or absorbed photon, and all other symbols have their usual mean-
ing. The cross-section for photoionization of a hydrogenic ion of core

charge Z from level n is given by (Seaton, 1959)

rr_ 2%« 3 a2 z2¥ gz(n, )
On =455 (heR)” Ta' = TE .o (AL12)

where sn(n,o), the Kramers-Gaunt factor, is of order unity. We put
gz (mw) = |, .o (A.13)

Using egs.(A.11), (A.12), (A.13), w;=1, W,=2n% the energy conservation

relation

ho= $mr? + I, (A1)

the ionization potential of level n

2 .
In = /)RC ,;7}2 ) -..(A.].S)

and the average velocity of the free electron Maxwellian distribution

from eq.(A.3), criterion (A.1@) becomes

, 7 4
Nle > 5.33x 10 23 ne T _ )
Un n T + 124,000 22/n*

..+ (A.16)
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The cross-section for radiative recombination is largest for recombina-

tion into the ground state; we thus put

n=Ngd . eee(A17)

The maximum value of n; is n,, the density of element A in the monatomic

plasma; in this work, we use r\;‘=t(>'4 o3,

For hydrogenic ions (Ngd =1), eq.(A.16) thus becomes

5.8% (0] 24T

Ne >> ‘
C /l”—/L T+_ 124;000 Za [ ] ooo(A.lg)

This lower limit on ne is given graphically in Fig.A.l for atomic hydro-
gen and for a hydrogenic ion with Z=1#. For lithium-like ions (Nga =2),

we obtain

7.3x 10 ztr
Ve >2 : - . ... (A.19)
xn./l- T+ 3’.)000 == .

This limit is given for C IV in Fig.A.l. For all cases of interest to
us, we find that the free electrons satisfy a Maxwellian distribution

for Ne 107 cem 3.



Appendix B

EVALUATION OF THE PARTITION FUNCTION

The partition function of an X-times ionized atom (ion X) is given by

—E£ /kT

U= Z P € : cee(B.1)
p=

where aJ?O is the statistical weight of level p of ion X and E:;) is the

th 0

energy separation of the ground and p state of ion X. For E’P in

Rydbergs and T in Kelvin,

Ep Ep
=k = g v/
e /87,890 =+ . : eer(B.2)

For low values of T, eq.(B.1) can then be approximated by the statisti-

cal weight of the grouﬁd state:

(x)
U 2w, ... (B.3)

If the first few excited states are energetically very close to the
ground state, they must also be included in the sum (B.l).

As T increases, the exponential term in eq.(B.1) tends to one since

Ef:) remains finite in all cases. LU”> is then proportional to the sum

of the statistical weights of all the 1levels p of ion X. This sum
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diverges as p tends to infinity. It must thus be truncated, and this
can be done in a number of ways, some of which are mentioned by
Griem (1964, p.l48). 'The easiest method is the nearést-—neighbour
approximation which is used, fér example, by Drawin (1974b). It con-
sists in finding the last bound state of ion X, as determined from the
‘max imum physicai size the ion can assume in a plasma of density n,.
Assuming circular orbits, and denoting the mean distance between the

ions by {d%), the last bound state is given by

ZLdt>
/bmx =V 24 ees(B.4)

where g, is the Bohr radius and Z the core charge of the ion. If ion X

is the dominant species in the plasma,
¢ I/S ¢
-+
<d > ~ (—77;1_‘:‘3) _‘ e (B.5)

is the population density of ion X in em™.

for spherical ions; n'®

Combining egs.(B.4) and (B.5), we then obtain

4
/b W 1-08X107 VZ
max —

[no]7e * ... (B.6)

For n= 10" em3,

Pmax & 50 rz;'z-- ees(B.7)
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It should be noted that the presence of neighboufing ions will peé—
turb the high-lying quantum states of each ion. Thus the energy eigen-
values and hence the radii of these states will be differeht from those
of an isolated ion. Eq.(B.6) is thus an approximation to the actual
last bound state of the ion. It should also be noted that if eq.(B.3)
is used for all‘temperatures, the relative population densities of the
levels of ion X obtained from this value of Ufﬁ will be correct for any
constant temperature. This is due to the fact that the population den-
sities are all proportional to the same value of UfX)for a given temp-
erature and ionic density. However, the absolute values of the pepula-
tion densities will be in error. We use this last approximation in

these calculations.



Appendix C

EVALUATION OF CROSS~SECTION INTEGRALS

1. I,= fo tnx € dx .. (C.1)

To evaluate this integral, we first expand the exponéntial in a power

series:
b hoid n :
I, = ja An x [ z -n" —)—’:-,-] dx. e (C.2)

Interchanging the order of integration and sumation,

oo b
—-— -\ s
I, =7z L x" Anx dx. ' .ea(C.3)

From Selby (1974, p.434),

n+i b
I,= ZEX Xy x -t )]a cee(Cd)

n=o h' n+1 N+1

o0

b

/ n XN+
- )X /
’H‘I)’ a h=o (he)(n+i)! la

= x Z )"

: b b
= /n x S,cx)/ - T . (C.5)

We evaluate the series

n+i
X

(nyi1)!

eee(C.6)

S, (x) = = (-1)"
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_It can be very easily shown to be given by

-

S, (x) = 1- e,

The other series is

o
n
7T, (x) = 2 (-1)
N n=o
which can be rewritten as

T, () = = 2 (1)

n=i

From the definition of the

Stegun, 1965, p.229),

.o (C.T)
xn+l
...(C.8
(ne1)-(n+1)l (C.8)
n
n_xn, . . (C.9)

exponential integral (Abramowitz and

— _yn+t X7 '
E,(x) = ~Y% ~An x + ,,Z;( 1) ST ...(C.10)
we obtain
T (=Y + tnx+ E (x) ... (C.11)

where ¥ = #.5772156649 is Euler's constant. Substituting for S (x) and

T'(x) from egs.(C.7) and (C.11l) respectively, eq.(C.5) becomes

_ —b
I, =€ "dna-¢ Unb +E @)~ E, (b)), .ee(C.12)

In particular,
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f:,{n x € 5 dx

1

e “tna + E, (a). .ee(C.13)

2. Io=Jo dnx/x €% dx

vel (CL14)

Expanding the exponential and interchanging the

in a power series,

order of integration and summation, we obtain

=N L G R
L= L% J. x™' Anx dx

= Unx = (-1)" b n-1i
_/4 dx +;%—:,—/772ja X /({I’Ix dx‘

X

...(C.15)
From Selby (1978, p.434),
[ 4,2 6 i(—:)"[x" /]"
I,= 4 nx/a e 7—(1/71—-;7—)&
. b 6 _ 5
=4 4n x/a + An x S;(X)/a -/, (1)/& ... (C.16)
bt n
where O, (x) = J (=) X oo (C.17)
n=j ”‘”.’
= 5 -1 n.__x_____n‘
T, (x) E_,( ) T ...(C.18)

From eq.(C.14),

S, (x) = =¥ -tnx - E (x), ... (C.19)
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The series (C.18) is evaluated by first differentiating it with respect

“to x:

de_(Z) = i (__I)n x"!

. «es (C.20)
d x n=y n-ﬂ.’
From eq.(C.14),-
d72(x) { _
el _?[x+jnx+z:,a)] | ...(C.21)

Integrating this equation, we obtain
X
Tadx) = =Y Adnx — £ In*x - f——-—-i(t)dt +C, ... (C.22)

where C, is a constant of integration. The lower limit of integration
of the integral of eq.(C.22) 1is chosen such that its constant of inte—
gration is zero, and its contribution to C, is also zero. The lower

limit t» e satisfies this condition; eq.(C.22) thus becomes
Ta(x)==¥Lnx-LLnx +f)L —E-é—‘-t-)dt + C,. .. (C.23)

It is not necessary to evaluate C, since we are interested in the dif-
ference T,(b) - T,(a). Substituting egs.(C.19) and (C.23) in eq.(C.16),

we obtain

T, =] Lan*x - Unx (¥ +Anx + E(x)

b
+¥Anx +L An*x - € (x)-C, ]a .es(C.24)
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‘vhere &,(x) ’ff-E—'t—ff-)- dt, . e (C.252)
Thus

I,= E(a) dna - E,()Lnb + €, (a) =€ (8) ... (C.26)
and, in particular,

J:"(";‘(}‘ € dx = Una E, (a) + & (a). ees(C.27)

3. én(9)=5:5.(1)/x dx ‘ ves (€.25b)

3.1. Analytical approximations

This integral cannot be evaluated analytically since E,(x) has no
closed analytical form. However, if approximate expressions are used to
represent E (x) in integral (C.25b), approximate analytical expressions
can be obtained for &,(0) . We use the following analytical approxima-
tions to represent E,(x) (Abramowitz and Stegun, 1965, p.231):

g < x4 1:
LY
E,(x) 23 a,x" - bix + EQ) ... (C.28)

n

[+

where a,=-8.57721566
a,= 0.99999193

a,=-0.24991055



a,= 0.05519968
a,=-0.00976004

ag= 0.00107857

1Ex)] < 2x 07,

-—3 2
ax+b
E,(x) « & XL
X Xt +cx+d

where a = 2,334733
b = 0.250621
c = 3,.330657
d = 1.681534

|E)] < 5x1075,

X 218:

- —X
+ £ Ex)
X

We use eq.(C.29) with the following parameters:

a = 4.03649
b =1.15198
Cc = 5.03637
d = 4.19160

[E¢x)) < 1077,

This approximation is labelled eq.(C.39).
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«ee(C.29)
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Eq. (C.25b) is then evaluated as follows:

P<£O < 1:

e,(e)zjo'-eﬁ'ic“'m dx + &, (1) ;

.. (C.30)
1< 6<10:
&,(6) ﬁj:—e-"‘—x(ﬂ dx + €& (0); | .ea(C.32)
0 > 10:
€,(0) % j:—eﬁ@ dx. .o (C.33)

€,(1) and €,(18) used in egs.(C.31) and (C.32) respectively must be
known to an accuracy comparable to that of the integral to which they

are added to.

3.2. Evaluation of the integrals

- aQ n / 2 !
= X — 1

[actnx + 2 5o X" = tn x J,

2 S a n
= A +—é-,(n 6 ~a, fnf —> 52 ... (C.34)

n=} n
. < a
where A= 3 ——n—‘L = 0.89121224. ...(C.35)
n=y
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0 2 10:
Equations (C.32) and (C.33) involve the evaluation of the same integral

over different limits of integration. We first evaluate the integral

(C.33):
eg. (- 30) = (€7 x+tax+b
A x dx = [ =z SEAXTE dx .- (C.36)
We rewrite eq.(C.36) to get
2
—+ -
&, (8) « X Faxss e " dx ... (C.37)

¢ Xx? Cx+«)(x+r3)

where -« and -p are the roots of x*+cx+d, ® and F> g, %< F, and

= € _ c :
2 E
\/ c) ... (C.238)

Separating the denominator of the R.H.S. of eq.(C.37) by partial frac-

tions, we obtain

X2(x+a)(xtp) = XFo e

where

= X* ~xa+b
o(Z(,s—-cx)

ﬁz—ﬁa+b
FH(p0

sz:...
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Cs = a (x+2)b
- “p o(’:. 2
Q‘#f'

Substituting eq.(C.39) in eq.(C.37), and using the following inteqrals
(Abramowitz and -Stegun, 1965, pp.228-230)

(g -
J % dx = €% E, (8+x)
o o-X 6-9
.’9 X X dx = —'9'" - &, (0), e (C.40)
we obtain
/0 sg-'%f'—s—d—dx =d E,(«+6) +d, £, (/3+6) ... (C.41)

+d, £,00) + dy £

where

d,=c e
dz"czeﬁ

- b
d3 - CS-';'F?"
de = ¢4,

From the values of a, b, ¢, and 4 of eq.(C.30), the following numerical

values of the parameters are obtained:

® = 1.6520153

P

]

3.9843540
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4,=-1.7537327
d,=-1.0997011
dy= 8.35792351

d,= 0.27483028. ee.(C.42)

1 <90 <10:

Integral (C.32) is now evaluated as follows:

0 . o0 0
/0 eg.ic 29 4x =/6 eg.)((c.zfi) d x _] ﬁi%fl)_dx_ . (C.43)
10

Since eq.(C.29) has the same analytical form as eqg.(C.30), wé use
eq.(C.41) with the following parameters to evaluate eq.(C.43):

X = 0.62044334

ﬁ = 2.7192127

d,=-1.8794966

d,=-1.2420263

dy= 0.944197¢6

d,= 0.14904308. v eoe(C.44)

Then eq.(C.43) becomes

10 ’
fe f—"-éifi dx = d, E, (x+6) +d, E, (/3+9)

-6
+d3[:',(6‘)+d4—%— - B ..+ (C.45)

—10

were B = d E, (oc+/0)+dzE,(/a+/o) +dyE,(10) +dy ?o
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B= 0.35280 %107, ve. (C.46)

3.3. Accurate evaluation of €,(1) and €,(19)

The values of €,(1) and ¢,(10) required in the evaluation of
egs.(C.31) and (C.32) can be calculated to any desired accuracy by num-
erical integration. We obtain these indirectly by first evaluating the
function G(1, 8 ) defined in Section 4 of Chapter II with numerical inte-
gration. The values of €,(8) can then be obtained from eq.(2.35).

This procedure gives the values

0.978432 x 107!

f

&, 1)

it

&, (1) = 0.35277326 x /0%, ' ... (C.47)

3.4. Accuracy of the approximations (C.31), (C.32), and (C.33)

The accuracy of these approximations depends on the accuracy of the
analytical approximations used to represent E,(x), egs.(C.28), (C.29),
and (C.3¢). The maximum accuracy that can be obtained is thus |&(x)|.
The actual accuracy is smaller than this value because the approximation

is integrated over x = @»w to obtain ¢&,(9).

We study each approximation separately.
<O ¢ 1:

From eq.(C.28),
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[E)] < 2x1077

Since this is the error in E,(x), the error in €,(8) will be greater
for the smallest value of €,(0) within the range # ¢ 6 < 1. This

value occurs at .6 = 1. We then obtain
€,01) = 0.0978432

by numerical integration, and
€,¢1))=0,0178432

from the approximate expression (C.31). The smallest error estimate
Jael ~ 2x 1077 .o (C.48)

is thus reasonable in this case. This gives an accuracy of at least
5—650
1< 6 ¢ 10:

From eq.(C.29),
[EC)] <5 x 0°°

and the error in E,(x) is given by.

—X
JaE ()] < 5x107° i . ...(C.49)
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‘For large x,

e-l
E, (x) ~ - . ee. (C.50)
and we have
AE, (x) )
e — < X /O ce e .
} E,(x)l < 5 . (C.51)

For x = 1, eq.(C.50) is not a very good representation of E,(x), and the

evaluation of the ratio (C.51) from egs.(C.49) and (C.29) yields

AEI(‘)

X -
E,0) < 8X (077, ees(C.52)

The largest uncertainty of eq.(C.32) will occur for 8 = 1 since the
range of integration x = 62« for 1 £ 6 £ 1§ is then at its maximum

extent. The value (C.52) can then be taken to be the minimum value of

Y4
&, (x)

[,Z 3 x 1075, ...(C.53)

The maximum accuracy obtainable with eq.(C.32) is thuS 4S., Evaluating
€,(1) and €,(10) with eq.(C.32), and corélparing these with the values
(C.47) obtained by numerical integration, we do obtain an accuracy of 4S
over the range 1 € 6 £ 14.

© 2 10:

From eq.(C.30),
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[E(x)] < 1077,

and the error in E,(x) is given by

-

Ja€E, (0] < (077 i . e (C.54)

Following the reasoning of egs.(C.49) to (C.53), the minimum value of

lae, ()1 / € (x) is

IAé,(x) -
én(x)l 2 /0, .+ (C.55)

By evaluating ¢€.,(8) with eq.(C.33), and comparing these values with the
more accurate ones obtained by numerical integration or by eq. (C.60), we

obtain the actual accuracy of eq.(C.33):

I I I

| 6 | Accuracy |
! ' |
| | |
| 10 | 6S |
| - |
| 100 | 55 |
| | |
| 200 | 4s I
| | I
| 1000 | 3S | s (Ca56)
[ [ .

As © increases, the accuracy of eq.(C.33) decreases; however, since we
consider values of 6 £ 109 in this work, eq.(C.33), for this range of

values of ©, has an accuracy of 5S.
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4. THE FUNCTION €:(8)

For large values of 6, it is easier to evaluate the function
! 2] .
€,(8) = €7¢,09) .o (C.57)

Using the analytical expression (C.41) in eq.(C.33), and substituting in

the above equation, we obtain
&l (6) = d e’ E(atp) +d, el E, (p+9)

+ d, e® E,(6) + —%‘i ve.(C.58)

where «, F, d,, d,, d,, and d4 are given by eq.(C.42), and

e g 0er)x L[ -

i "2l
P st m e ]l l(C.59)

However, as © increases, the accuracy of eq.(C.33), and hence of
eq.(C.58), decreases. It is then preferable to evaluate €,(6) by
substituting the asymptotic expansion of the exponential integral

(eq.C.59 with r = @) in eq.(C.25b). We then obtain

o
€/ () 2—9'7[/ - (1+4) 5

J
1ot rd) 3~ ], <. (C.60)
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For sufficiently large values of ©, this equation can be evaluated to
.any desired accuracy by including more terms in the sum. This expres-
sion was used to evaluate éf(ZM) and é,’(l@ﬂﬂ) to estimate the accuracy

of approximation (C.33) at largé values of 0.



Appendix D

LEAST SQUARES FITS

1. THE METHOD
Suppose that a finite number n of data points y; = y(x3), i=1, 2,
«ssy N are the values of an unknown function y(x) at the points x¢,

i=1, 2, ..., n. We approximate the function y(x) by a function f(x)

which is a function of m adjustable parameters a,, k=1, 2, ..., m:
f(x)'a,,a,_,,.,, a”‘) &g(x). «es(D.1)

At the points x;, the function f(x) has the values f; = f(xp), i =1, 2,

«esy N. Defining the residuals

R‘: = y‘:- ‘{'5 3‘:'-")2) oo, n ) cee(D.2)

the values of the parameters a, can be evaluated within the least

squares approximation by requiring that

[

LR = Z (y-5)° e Du3)

=y "‘: f]

be a minimum. This requirement imposes the cenditions
n
0 [ i ] -
<. . | =0 k=12 ...
aak ".:l A ) ) ) ) m .-Q(D¢4)
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-vhich can be rewritten as

n "
2R L =0 5 k=42,..,m

L=y aak ’ 1°°

n f '
: Z(;—J")-é—‘—:o'éwz...m. ...(D.5
o & T 5, ) A (D-3)

These conditions minimize the difference between the actual values y;

and the approximate values f; of the function y(x) at the points xg.

However, if y(x) varies over several orders of magnitude, the approx-
imation f(x) will not have the same relative accuracy for all values of
y(x): it will be less accurate for small values of y(x). In such

cases, it is better to consider the relative residuals

r; = -5-‘-‘;‘_}‘- ;L= 1, 27, e, N «++(D.6)

Requiring that

{ * LN D.?

=) ¢ L= H~ ( )
be a minimum, we obtain the conditions

n

or:

2L =0 5 k=1,2..m

T ddy / 2o
or f—i—(/-i‘-—@i=0'k—/1 m (D.8)

[zl g; g: aak ) ) ) p") [ 2 L L ]



333
The minimization conditions (D.5) or (D.8) are solved for the fit param-

“eters a,.

2. EXTRAPOLATION OF THE QUANTUM DEFECTS

We use the notation of Chapter III. We have N known values of €,,
n=1, 2, ...; N vhich are calculated from the quantum defects
Mn = /J.(Gh) with eq.(3.7). These values satisfy the expression
(3.20):

Tan (T phne) = A Cen) Yy (&) ... (D.9)

where A‘(e,‘) is calculated with eq.(3.10) and Y, (€&,) is given by

eq.(3.17):
Yy (€n) = ;250(; ane ,? /S’mé)f"] <.+ (D.10)
=0 <y

where ¢, i =0, 1, ..., p and ?m, m=1, 2, ..., q are the fit parame-

ters. We rewrite eq.(D.9) as

Gylen) = X (€n) .e.(D.11)
where Gy (€n) = Taz ((Z/;"l) ee.(D.12)
l n

can be evaluated from the known values of €,. We thus approximate the

function Gi(é,‘) with the function Y, (€n). To simplify the evaluation of

the fit parameters, we rewrite egs.(D.18) and (D.11l) as
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‘ : 9
_ﬁ K €n — GyCEn) mZ, ﬁm €, = Gy (€En) ee.(D.13)

t=o

and we say that we approximate the values of Gl(en) with the L.H.S. of

egq.(D.13). The residuals are then given by
3
Rn= Gy (en) - fi XK €,
. =0

+ Gy(€a) ,"2 [ €, 3n=12,... N ... (D.14)
. = '

J

and the required derivatives by

OR k .
g? = Gy (€n) éf, 5J'= / 2,...,7. e« (D.15)
¥ ,

From eq.(D.5), the minimization conditions are then given by

oy ¢ £ { fd‘-é:' —VG}Cén)é' /5’,,, €,

n=, i=o

—.Gl(é”)}é: =0 )‘é"O)/J--.)/b;
. | |
fi: Z{f A & ~ Gy len) 2 f €N

-Gy (e..)} Gx (€n) E) =o;J= b2 ..., 9. ...(D.16)

which become
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cp: F[ 2 u - 2 [ 2 6 €]
n M= nai

{=0 =

= ["Zj G,(c—n)éf};kzo) byeeey b3
g0 Llzerla-2 [z cicaer]p,
= ['{{i Gilen) €h]s j=1,2..., q.

ees(D.17)

We thus obtain a set of p+g+l linear equations which can easily be

solved for the p+gtl fit parameters.

3. PHOTOIONIZATION CROSS—SECTIONS

We use the notation -of Chapter VIII. The photoionization cross-sec-

tion data a;(U;), i =1, 2, ..., n are fitted to an expression of the

form (eq.8.11)
N o=C by ba b,
a[(“;) —-ET-P /+.__u—:-+'-1 *"'.. +_—"' ] .o.(D.ls)
{ ¢ ;

vhere C and bk' k=1, 2, ..., mare the fit parameters. We rewrite

this equation as

- d
a (u:)=Z I/(l;‘*” ... (D.19)

A
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where d,=C

dk = Cbk jk=/, 2,...,["7.

Since the cross-section varies over several orders of magnitude, rela-

tive residuals are used in this fit:

» de .
Fo= 1 - ,E, a; b(,;k*}’ s t=h2...,n -+ (D.20)
The required derivatives are given by
arl: — —-:l—v—-—- o/ -
—ﬂ — aiuiJ+F )\I —9) I).-.)ﬂ- ...(D.Zl)
d

From eq.(D.8), the minimization conditions are

z[- 5 < L =0
=} kzo a" aik.*)] a" u[ Jflb )
J= o, bhoym; ... (D.22)

which can be rewritten as

|
‘Ms.

we

22 o) d

= aiz ui kK+2p+] a; u; P

~
ll

J = 0 ! m. ...(D‘.23)
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We thus have a set of m¥l 1linear equations which can be easily solved

" for the m+l fit parameters.

4. COLLISIONAL EXCITATION CROSS-SECTIONS

We use the notation of Chapter VI. Since we are dealing with cross-
sections, we again use relative residuals. We have two different

expressions for optically allowed and forbidden transitions.

4.1. Allowed transitions

The collisional excitation cross-section data G;(U,), i =1, 2,

LR RN

n are fitted to an expression of the form (eq.6.6)

Gii) = ko L5 Ln (125 pui) e .22)

where «, §,and + are the fit parameters. The relative residuals are

given by

r[ = [ - g‘f u‘;{:;ﬁ /n (/.25‘#(1;)5

L=02,.,n . «..(D.25)

and the required derivatives by

or __ k. _E‘_Lé_("_li_/n (/.2§/9a;)

o o

ork _ _ _k« uc—¢

op s: u* B
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or.  kx An (,_2glgu;). | .o« (D.26)

2¢ ~ o ul

From eq.(D.8), the minimization conditions are

: Zn [l" gj u;l—zqf /én(/.zs'(aua)]

Y

xkiﬁ—,(n (/-ZS/AUL‘) =0

S W

L=t

6 ﬁ[,_ léo: uz}—;f An (. zs‘lé’u.-)]

L Ui=d _

G: U*

b: ¥ [1- 2 “‘u"_f An (125 pu) ]

L=

, An(2s g us)
S u:*

=0 eee(D.27)

which can be rewritten-as

% = {‘n M—/ﬁ (/.zs/gu.-)}

= O h?*
/{ k LG« [ %‘5—:!1—?;— An (/.zs‘,éu;)Jz} .. (D.28)
/fnla = { ‘é, "é‘“—u? klo( - :‘-:(c'fl An (125 u;)]}
/i;Z:; —‘é‘s‘ﬁ%—]z} . (D.29)

d>: {é’ Znéil-;&sﬁac) ,ln(G/.izj:gu:) _ k; ]}
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/i Z [j" gf;f“‘)]zj . | ... (D.30)

=

These three equations are solved by an iterative procedure: from an
initial estimate of &, and B, 4), is calculated with eq.(D.3@); from @,
and 4;°, «, is éalculated with eq.(D.28); from 4>° and o, @, is calcu-
lated with eq.(D.29). This procedure is repeated until sufficient accu-

racy is attained.

4.2. Forbidden transitions

The collisional excitation cross-section data G;(U;), i =1, 2, ...,

n are fitted to an expression of the form (eq.6.11)

C: (W) =ko<—‘i:;—i’- eee(D.31)
U,; *

where o and 4) are the fit parameters. Using relative residuals, and

following the steps of 'egs.(D.24) to (D.30), the minimization conditions

can be easily shown to be

xe{ E4=8) /T u_:-g_]Zj

= 6(-“!'2 i) Glu"z .oo(D.32)

4>= [lsz::- Gaiu;" [G;Iu; - klot ]J
/R e
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Again, these two equations are solved-by an iterative procedure: from
"an initial estimate of $,, &, is calculated with eq.(D.32), and substi-
tuted in eq.(D.33) to obtain <h. This procedure is repeated until suf-

ficient accuracy is attained.



Appendix E

CALCULATION OF THE GAUNT FACTOR ¢

A more accurate expression than g = 1 1is obtained for the Gaunt fac-
tor by transforming eq.(2.8) to the form of eq.(2.12). With eq.(2.11),
the two hypergeometric functions of eq.(2.8) can be expressed as polyno-

mials:

' - . 4}7”‘ )
-QF; (—'ﬂ) n+/) I)-. (,,__n:)l

_ 2"—_' - n'! (n-1! :_t_i_@g_’_]k ]
T koo RIF(n'-R) (n-1-k)] L (n-n')? )

eee(E.)

=0

.y 4nn’'
JFI ("”"".’)"'n/ // —-zm—z)

L=UNP L RPN ) vk
- Z (-1) (n’-1)! n! 4nn ]. L (E.2)

kes kI* (n'=1=k)N (n—k)! L (n-n")?

For large n and n*, these series are dominated by the last terms and we
thus evaluate them by carrying out the summation in the reverse direc-
tion, starting with the last term. Using 2;= nr—n', egs.(E.1) and (E.2)
become:

.y 4nn’
2,‘—7 ("ll')-—l'l-/-lj l} ‘—'—A“i‘—

'
_pn' _(n-0! < 4nn' \" , |
=Y (a-Dinl a* ) Y, (n ) ”) ve.(E.3)
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-where
' = (A oA (n-)* ____
x‘(an) = | (4 n)'*’ 21 a+1 pn'2
! a2 (n'-1)%(n —2)‘(4 n) -
T 3T (At (0+2) pY ) oo ... (B4
.o 4nn'
aF, (=n'+1,-n; 1; - _fz_
e (- n! 4nn'\h=i v (n ‘(E . :
(ar 0l (-~ A% 2 (n',n) .o (B
where

_ A (-2 /A n)
Z(n‘)n) - l - A+2 R V4 n

+

2 )2 2
! A (n'-1)%(n-2) ( ___ __+_"

21 (ar2)(ot3) P ... (E.6)

We also define a correction factor §(n) in such a way that all factori-

als can be written as

n! = Jamn n" e~ " 4(n) e (E.T)

For large'n, §(n) is obtained from the Stirling asymptotic formula for

the gamma function (Abramowitz and Stegun, 1965, p.257):

A 1 ! _ 139 ens
Jln) % | 4 e + ST T Siee0 , ... (E.8)
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For small values of n, 6(n) is evaluated from eq.(E.7). Substituting
"egs.(E.3) to (E.8) in eq.(2.8), and comparing the resulting equation

with eq.(2.12), we obtain

‘ an+2n’
_ V3 n' N ’
9-—-—2—— /‘ (———__—-h-l-n') Y3 (/’I)n)
! 2 2 /]
) dln) z :
where Xs (ﬂ ) n) = (f(ﬂ')”J(A) . vee (Eo18)
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