MONITORING QUASAR PROPER MOTIONS

Five closely associated quasars in Cetus, which could easily fit within the frame of a CCD with a field of view greater than 10 arcminutes. This quasar cluster would be the ideal set to monitor for proper motion because the density is particularly high; a factor greater than 60 over the average quasar density (Arp et al., 1983). Coordinates of QSO 8, 9, 10, 11 and 12 are in table below.


OTHER QUASAR TRIANGLES

Results of a computer search of quasars brighter than 18th magnitude in Burbidge et al. (1993) that form a triangle with other quasars within 20 arcminutes. Each triangle side cannot exceed this limit. The side of most CCD chips on standard amateur telescopes subtends approximately 15 arcminutes on average. Therefore the longest length of each triangle should be able to fit comfortably within the chip diagonal.


  QSO       Other       RA (2000)   DEC (2000)    V   (B-V) (U-B)  Z(EM)
            names

0107-025 QSO 10 1 10 13.19 -2 19 52.9 18.2 0.956 0107-025 QSO 8 1 10 14.59 -2 16 58.0 18.4 0.726 0107-025 QSO 9 1 10 16.29 -2 18 51.2 17.4 0.952 0107-025 QSO 11 1 10 30.19 -2 14 55.0 1.891 0107-025 QSO 12 1 10 48.05 -2 15 25.4 1.24 (Note QSO 10=PB 8553, QSO 9=PB 6291)
1258+287 PB 3207 13 0 28.73 28 30 8.5 17.38 .30 -.80 0.648 1258+286 PB 3214 13 0 48.23 28 23 19.8 17.75* .07 -1.12 1.922 1258+285 PB 3216 13 1 1.52 28 19 48.1 17.4 * .30 1.355
1623+271 KP 72 16 25 11.14 27 3 12.2 18.0 1.44 1623+269 4C 26.48 16 25 14.32 26 50 26.7 17.5 * 0.779 1623+268 KP 76 16 25 47.71 26 44 42.6 18 2.467 1623+268 KP 77 16 25 48.26 26 47 9.7 17.3 2.526
1241+176 12 44 10.85 17 21 4.6 15.38 1.273 1242+178 12 44 58.85 17 32 58.1 17.9 0.265 1242+176 12 45 26.82 17 20 51.8 18.0 1.857
1228+078 KP 16 12 30 34.24 7 33 5.4 17.47 -.06 -.99 1.816 1228+076 KP 17 12 31 7.92 7 24 38.5 17.5 1.878 1228+077 KP 18 12 31 20.51 7 25 57.6 17.59 -.01 -.07 2.391
0056-001 PHL 923 0 59 5.49 0 6 51.2 17.02 .20 -.70 0.717 0056+001 0 59 18.25 0 25 19.1 18.0 0.613 0057+000 1 0 2.31 0 16 42.3 17.2 0.776
1429-006 14 31 43.69 -0 50 11.5 17.8 1.179 1429-008 14 32 29.12 -1 6 15.9 17.74 2.078 1429-006 14 32 31.05 -0 52 28.9 18.2 0.361 1430-007 14 32 44.33 -0 59 15.1 17.8 1.022 1430-006 14 33 21.33 -0 54 45.5 16.4 1.116
0048-015 0 50 51.51 -1 17 37.3 17.2 0.763 0048-013 PHL 857 0 51 2.47 -1 2 43.4 17.9 1.87 0049-013 0 51 35.25 -1 7 10.0 17.8 1.560
0037-018 UM 264 0 40 18.22 -1 37 22.4 18 2.34 0037-019 0 40 18.31 -1 40 59.6 17.73 0.296 0038-019 UM 266 0 41 26.01 -1 43 16.0 16.86 1.674
0050-253 MD1:85 0 52 44.67 -25 6 51.6 15.9 .20 2.18 0050-254 0 53 8.07 -25 11 22.4 17.6 1.019 0051-253 0 53 53.61 -25 4 6.1 17.5 1.444
0100-423 B16.09 1 3 4.90 -42 3 57.1 17.7 2.33 0100-423 MD6:138 1 3 5.03 -42 4 3.6 18.0 1.88 0101-422 1 3 18.97 -42 0 48.3 17.5 1.90
2134-426 21 37 47.89 -42 26 11.6 17.9 1.804 2135-427 21 38 24.04 -42 30 16.1 17.2 0.250 2135-428 21 38 30.12 -42 39 56.8 17.91* -.78 1.46
0315-553 MZZ 4875 3 16 50.25 -55 11 9.9 17.91 2.531 0316-555 MZZ 8525 3 17 32.73 -55 20 25.3 17.97 0.406 0316-555 MZZ 6346 3 18 18.74 -55 20 1.8 17.56 0.871
Triangles are sorted by decreasing declination. For precision astrometry, ideal targets should transit near zenith at some point in the year. An observer should choose a triangle whose declination roughly corresponds to their latitude. These quasars have no published proper motions, however the laser star theory predicts many will have significant proper motion. Many amateur astronomers are qualified enough to confirm this prediction.

REFERENCES

  1. Surdej,J., Swings,J.P., Henry,A., Arp,H., Kruszewski,A. and Pedersen,H.: 1983, Proc. 24th Leige Intl.Ap.Coll., p. 355.

Return to Amateur Astrometry